R/dm_glm_multi_conc.R
dirichlet_multinomial_anova_mc.Rd
Dirichlet multinomial GLM likelihood ratio test for a single cluster
dirichlet_multinomial_anova_mc( xFull, xNull, y, concShape = 1.0001, concRate = 1e-04, robust = T, outlier_prior_a = 1.01, outlier_prior_b = 100, fit_null = NULL, debug = F, init = "smart", smart_init_regularizer = 0.001, ... )
xFull | [samples] x [covariates] matrix for the alternative model |
---|---|
xNull | [samples] x [covariates] matrix for the null model |
y | [samples] x [introns] matrix of intron usage counts |
concShape | Gamma shape parameter for concentration parameter |
concRate | Gamma rate parameter for concentration parameter |
robust | Whether to include an outlier model (i.e. use dm_glm_multi_conc_robust rather than dm_glm_multi_conc) |
outlier_prior_a | Only used for robust model. The outlier probability outlier_prob ~ Beta(outlier_prior_a,outlier_prior_b) |
outlier_prior_b | Only used for robust model. The outlier probability outlier_prob ~ Beta(outlier_prior_a,outlier_prior_b) |
fit_null | Optionally cache the fitted null model to save repeatedly fitting the null for each cis-SNP when sQTL mapping) |
debug | Whether to give verbose output from rstan. |
init | Can be one of "smart", "random". smart uses an method of moments estimator to get a reasonable initialization. The seed for "random" can be set through the ... arguments passed to rstan::optimizing. |
smart_init_regularizer | Used to protect against colinear covariates. |
... | will be passed on the rstan::optimizing, so can be used for example to set the algorithm used (default is LBFGS) or the random seed if random initialization is requested. |