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Motivation

Nonparametric models have the potential to avoid overfitting or
underfitting by learning appropriate model capacity

but

Many new inference algorithms struggle to outperform Gibbs sampling

3



Motivation Beam sampling the iHMM Variational Inference for DP mixture models Collapsed Variational Inference for HDP Hybrid inference Conclusions

Outline

1 Motivation

2 Beam sampling the iHMM

3 Variational Inference for DP mixture models

4 Collapsed Variational Inference for HDP

5 Hybrid inference

6 Conclusions

4



Motivation Beam sampling the iHMM Variational Inference for DP mixture models Collapsed Variational Inference for HDP Hybrid inference Conclusions

Hidden Markov Model

Hidden Markov Models have the form:

p(s, y|π0, π, φ,K) =
T∏
t=1

p(st|st−1)p(yt|st)

where s is the state trajectory and y is a vector of observations
through time.
Prior on row πk of transition matrix:

πk ∼ Dirichlet(αβ)

β ∼ Dirichlet(γ/K, . . . , γ/K) 5



Motivation Beam sampling the iHMM Variational Inference for DP mixture models Collapsed Variational Inference for HDP Hybrid inference Conclusions

The infinite HMM

Take the limit as K →∞

β ∼ GEM(γ)
πk|β ∼ DP (α, β)
φk ∼ H
st|st−1 ∼Multinomial(πst−1)
yt|st ∼ F (φst)
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Gibbs sampling

Integrate out π, φ.

To sample state trajectories: for t = 1..T compute
p(st|s−t, β, y, α,H). Some probability of transitioning into a
previously unseen state.

Very slow mixing because of strong correlations between time points
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Beam sampling

Adaptive truncation with convergence to true posterior maintained
Introduce auxiliary variables ut ∼ Uniform(0, πst−1st)∀t = 1..T
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Beam sampling

To sample state trajectories:

Forward sweep becomes a finite sum:

p(st|y1:t, u1:t) ∝ p(yt|st)
∑

st−1:ut<πst−1st

p(st−1|y1:t−1, u1:t−1)

Backwards sampling

sT ∼ p(sT |y1:T , u1:T )

For t = T − 1..1

st|st+1 ∼ p(st|st+1, y1:T , u1:T )
∝ p(st|y1:t, u1:t)p(st+1|st, ut+1)
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Results
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Variational Inference for DP Mixtures (Blei, Jordan 2006)

Observations Xn, indicator variables Zn, cluster parameters ηk

Use the stick breaking construction for the DP:

vi|α ∼ Beta(1, α)

πi|v = vi

i−1∏
j=1

(1− vj)
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Variational Inference for DP Mixtures (Blei, Jordan 2006)

Mean field variational approximation:

q(v, θ, z) =
T−1∏
t=1

q(vt)
T∏
t=1

q(ηt)
N∏
n=1

q(zn)

And truncate: q(vT = 1) = 1
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Unfortunately...

Outperformed by Gibbs sampling (although does converge faster)

Successive variational families are not nested, so the approximation
may get worse increasing T to T+1
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Accelerated Variational Dirichlet Process Mixtures
(Kurihana, Vlassis, Welling 2006)

Idea: instead of truncating the stick breaking construction, fix the
variational distribution of all components for k > K at their prior

Still have to evaluate an infinite sum, but tractable

Show improved performance

(Also improve performance by cutting up sample space with kd-trees,
but not really an idea that extends to other models...)
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Worst plot ever?
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Collapsed Variational Inference for HDP (Teh, Kurihara,
Welling 2008)

A nonparametric model for LDA

xid|zid, φzid
∼Mult(φzid

)
zid|θd ∼Mult(θd)
θd|π ∼ Dir(απ)
φk|τ ∼ Dir(βτ)

vi|α ∼ Beta(1, α)

πi|v = vi

i−1∏
j=1

(1− vj)
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Graphical model

Graphical model for HDP topic model:

Factor graph including auxiliary variables
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Different truncation scheme

Idea: Assume q(zid > K) = 0 for all i and d.

Observations have no effect on vk or φk for all k > K, so marginalise
these out

Simpler than tying to the prior but variational families at successive
truncation levels are nested
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Results

Log probability of test data:

Outperforms parametric LDA

Still outperformed by collapsed Gibbs sampling for HDP
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Hybrid variational/Gibbs Collapsed Inference in Topic
Models (Welling, Teh, Kappen 2008)

Idea: Combine sampling and variational approximation in a principled
way

Divide dataset of word counts per document into a set with counts
≤ r (call this SGB) and > r (call this SV B)

Gibbs sampling for the SGB

Variational approximation for SV B

Assume factorised across division and combine in a principled way

Stochastically maximises the variational bound
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Hybrid variational/Gibbs Collapsed Inference in Topic
Models (Welling, Teh, Kappen 2008)

A lot of work... and now we can rival collapsed Gibbs sampling! With
r = 1
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Conclusions

Significantly outperforming Gibbs sampling is hard!

“Slicing up” nonparametric models ala beam sampling can be very
effective

There is significant interest in getting variational approximations to
work in nonparametric models

Truncation strategies, collapsing and auxiliary variables are important

Hybrid sampling/variational methods may be useful but
generalisation to continuous variables not yet clear
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