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Models

Factor graphs for the three proposed models.

Abstract

We demonstrate and compare three unsupervised
Bayesian latent variable models implemented in

We use Variational Message Passing under the In-

fer NET framework. To support these models var-
Infer.NET [1] for biomedical data modeling of m@ e ious factors were added to the framework: e.g. lo-

Shared precision

42 skin and ageing phenotypes measured on the N oistic regression, ordinal regression, “sum where”.
12,000 female twins in the Twins UK study [2]. Factor loadings Latent factors
K
o Factor > Conclusions
onjugate prior analysis _
Data characteristics o ! ;5 Mean @ Latent factors | \ariables 1. Using appropriate likelihood models allows
Like many biomedical applications: e N2 cate reniecers u | optimal integration of different data types
P uxiliary

Likelihood variables

1. High missingness. Many variables have up to function __|__ | | Factor 7 7/ e nadel . FA models have superior predictive perfor-
80% missing: Bayesian methods are able to s ikelihood models analysis X7 mance to mixture models in this settin
parameter P
naturally deal with missingness é) Observations

. Combining regression and FA components
2. Heterogeneous data. Continuous, categorical eases interpretability but at some cost to

(including binary), ordinal and count data: predictive performance (this may be due to

using appropriate likelihood functions for 1. Generalised mixture model. 2. Generalised factor anal- 3. Combined regression and scheduling problems or local minima)
each of these data types improves statistical Clusters individuals. Suitable ysis model. Allows different factor analysis model. Pro-

powetr. conjugate prior for each data observed data types using vari- vides the expressive power 4. InferNET allows us to use complex models

type. ous likelihood functions of FA and interpretability of
3. Multiple observations. Combine into a single regression.

phenotype: aids interpretability, improves Future work

statistical power and helps with missingness. 1. Time series. Multiple asynchronous visits, dif-
Results ferent phenotypes recorded each time.
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4. High dimensional. 6000 phenotype and ex-
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ing with Gaussian Process and Mixture of Ex-
perts models to accommodate nonlinearity.

posure variables, measured at multiple time . O e g . Scalability. Although our message passing al-
. . . . . LEG_ULCER . . o .
points: use dimensionality reduction NEGK WRINKLES gorithms are efficient, scaling modern health-
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= o Skin cancer - ofher ever? : B : care Size datasets remains a challenge. lI"aral-
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Medical expertise: prior knowledge e -
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E5 o4 °” * EP Ordinal Probit suastoss 1 I . Online learning. This would allow new data
c 9 ® VMP Ordinal Logistic Skin sun sensituity . i o
RS EP Linear Sunbatin could be incorporated as it is recorded.
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