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Abstract
We demonstrate and compare three unsupervised
Bayesian latent variable models implemented in
Infer.NET [1] for biomedical data modeling of
42 skin and ageing phenotypes measured on the
12,000 female twins in the Twins UK study [2].

Data characteristics
Like many biomedical applications:

1. High missingness. Many variables have up to
80% missing: Bayesian methods are able to
naturally deal with missingness

2. Heterogeneous data. Continuous, categorical
(including binary), ordinal and count data:
using appropriate likelihood functions for
each of these data types improves statistical
power.

3. Multiple observations. Combine into a single
phenotype: aids interpretability, improves
statistical power and helps with missingness.

4. High dimensional. 6000 phenotype and ex-
posure variables, measured at multiple time
points: use dimensionality reduction

Medical expertise: prior knowledge
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Key processes involved in skin and ageing, de-
vised in collaboration with an experienced derma-
tologist. We use this prior knowledge in a very
crude way at the moment (separating explanatory
variables and symptoms) but we intend to use such
knowledge to incorporate more structure into our
models.

Models
Factor graphs for the three proposed models.
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1. Generalised mixture model.
Clusters individuals. Suitable
conjugate prior for each data
type.

2. Generalised factor anal-
ysis model. Allows different
observed data types using vari-
ous likelihood functions

3. Combined regression and
factor analysis model. Pro-
vides the expressive power
of FA and interpretability of
regression.

Results
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Synthetic data test. Ordinal regression with
5 output values, P = 20 observed explana-
tory variables and varying sample size.

Correlation under the model. The fitted FA model
implies a particular covariance structure for the
variables of interest.
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Imputation performance (real
data). For a random 10% of indi-
viduals treat symptoms (e.g. skin
cancer, wrinkles) as missing, but
leave the explanatory variables
(e.g. age, smoking, sun exposure),
and infer the predictive posterior
over the held out values.

Methods
We use Variational Message Passing under the In-
fer.NET framework. To support these models var-
ious factors were added to the framework: e.g. lo-
gistic regression, ordinal regression, “sum where”.

Conclusions
1. Using appropriate likelihood models allows

optimal integration of different data types

2. FA models have superior predictive perfor-
mance to mixture models in this setting

3. Combining regression and FA components
eases interpretability but at some cost to
predictive performance (this may be due to
scheduling problems or local minima)

4. Infer.NET allows us to use complex models

Future work
1. Time series. Multiple asynchronous visits, dif-

ferent phenotypes recorded each time.

2. Scalability. Although our message passing al-
gorithms are efficient, scaling modern health-
care size datasets remains a challenge. Paral-
lelization is a potential solution.

3. Online learning. This would allow new data
could be incorporated as it is recorded.

4. Nonlinearities. We are currently experiment-
ing with Gaussian Process and Mixture of Ex-
perts models to accommodate nonlinearity.
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