
Real Time Continuous Curvature Path Planner

for an Autonomous Vehicle in an Urban

Environment

David Knowles
Mentor: Richard Murray

California Institute of Technology

20 September 2006

Abstract

An real-time algorithm based on Ariadne’s Clew and A* is developed to
plan dynamically feasible trajectories appropriate to a vehicle traversing an
urban environment in a legal manner. Simple precomputed clothoids are used
to build a tree of possible maneuvers which is searched to minimize a cost
function depending on path length, steering effort and lane discipline. The
algorithm dynamically adapts its map sampling resolution to suit the difficulty
of the problem. Complex situations where reversing is required are handled
naturally. A proof-of-concept prototype real-time velocity planning algorithm
is demonstrated. This functionality is proposed and recommended for use as
part of Team Caltech’s entry into the DARPA Urban Challenge 2007.

In November 2007 DARPA will hold the Urban Challenge race, in which
qualifying autonomous vehicles will attempt to navigate a route through an
emulated urban environment to specified checkpoints in a safe, legal manner.
It is the aim of this project to develop Team Caltech’s existing software on-
board the 2005 DARPA Grand Challenge (DGC) entry, Alice, to be able to
plan a dynamically feasible, traffic-law abidding trajectory. The existing path
planning module is designed for a static, desert environment. The new planner
will have to deal with moving obstacles whilst also changing its emphasis from
minimising traversal time to performing safe, legal driving. This report describes
the development of a spatial planning algorithm that could be used either to
produce appropriate seeds for the optimization stage of the existing framework
or as part of a newly proposed spatial-temporal planner framework.

The planning module developed for the Grand Challenge 2005 has two
stages: stage 1 samples a speed limit map over a grid aligned to the Route Data
Definition File (RDDF) corridor, and performs a forward-only graph search to
find the fastest route; stage 2 employs the Non-Linear Programming optimiza-
tion package SNOPT to minimize traversal time in a receding horizon frame-
work. More details can be found in [1]. This project focuses on development of
the stage 1 planner.

Various planning methodologies have been considered and two candidates are
proposed. The first is an receding horizon time traversal optimization frame-
work, based on the 2005 DGC software but with dynamic obstacle avoidance as
incorporated by Martin Larsson [2]. Various problems are anticipated with this
approach:

- time traversal minimisation is difficult to reconcile with safe, predictable
driving

- how to incorporate legal constraints

- the receding distance horizon framework is does not allow for many urban
situations such as queuing

- no method exists to add costs to actions such as crossing lanes

- the gradient descent method struggles with the binary obstacles found in
urban environments

- unnecessarily complicated for highly constrained urban situations

There are also problems generating a useful seed for optimization. The ra-
tionale behind the existing split into two stages is that the stage 1 planner
approximates a solution considering only spatial constraints. However, to gen-
erate a useful seed when dynamic obstacles are involved we must consider the
coupling between the spatial and temporal problems: whether we need to change
direction to avoid another vehicle depends upon the time we get there, which in
turn depends on the spatial route we took. To generate the seed the full spatial-
temporal problem must be solved, so the complexity is not reduced. Larsson [2]

1

adapted the optimization stage using the output from my spatial planner as a
seed but noted that this can cause problems for convergence.

I propose an alternative planning architecture: divide the problem into spa-
tial and temporal planning problems. A spatial planner generates a feasible
spatial path up to a spatial horizon a given distance away, based on the static
environment: legal constraints such as lane boundaries and static obstacles such
as parked cars. A velocity planner maximizes the distance traveled along this
spatial path within a given time horizon, based on the dynamic environment,
i.e. the predicted movement of other vehicles being tracked. Each planner obeys
the appropriate vehicle dynamics: the spatial planner minimum turning radius,
the velocity planner maximum acceleration and maximum speed for the road
and for the turning radius.

Figure 1: Proposed planning architechure. Clean linear data flow is achieved:
static and dynamic maps are considered separately; spatial and velocity planners
output to steering and acceleration controllers respectively.

The advantages are that this approach

- has greatly reduced complexity at both stages which is beneficial for de-
velopment, computational load and reliability

- has very clean data flow as shown in Figure

- allows for a trajectory where we come to a stop until the end of the time
horizon, e.g. behind a queued car

2

- is analogous to how humans drive: in most cases we decide where we [3]
want to go and then drive that path at a safe speed given other vehicles

Since the choice between these methods is still under high-level discussion,
the spatial planner developed is designed to integrate into either framework. It
could be either to produce more useful, realistic seeds for the optimization stage
or as part of the spatial-velocity planner framework.

The first cut of the spatial planner was an A* based algorithm [4]. The
legal zone was sampled into a grid, in much the same way as the existing stage
1 planner, but without restricting movement to the direction of the corridor.
A grid-based A* algorithm does not take vehicle dynamics into account. To
account for this I proposed calculating the change in yaw angle from one node
to the next and adding a weighted multiple to the cost function G for the edge.
This method would also allow the turning radius to be constrained, albeit in a
approximate manner. A major difficulty encountered was how to smooth the
trajectory and remove artifacts resulting from the grid-based sampling of the
map.

Because of the inherent problems of imposing a grid based graph search onto
the spatial planning problem, it was decided to move to a methodology using
a tree of simple, feasible curves to describe potential trajectories [3]. Clothoid
curves were chosen because they allow a continuous curvature trajectory to be
specified. A clothoid has curvature which varies linearly with arc length, and
is therefore equivalent to turning the steering wheel at constant speed. When
the maximum curvature is reached, i.e. the minimum turning radius, the curve
becomes the arc of a circle [5]. The method used is based on Ariadne’s Clew [3], a
general planning technique consisting of two complementary algorithms, search
and explore. explore iteratively grows a tree of states (positions and orientations)
reachable by simple maneuvers. search tries to find a simple trajectory from any
existing node of the tree to the target waypoint. explore effectively discretizes
the map but using dynamically feasible continuous curvature maneuvers rather
than an artificial grid. This method extends naturally to complex maneuvers
such as parking or K-turns by adding reverse maneuvers to the set that the
sub-algorithms consider.

In [3] explore is specified as an optimization problem itself: to maximize
the distance of a new node in the tree from any existing node. This is a large
parameter space: the new node can be at the end of a clothoid curve with any
length, any curvature and originating at any existing node in the tree. This is
one of the main reasons Scheuer’s work involved planning times of around four
minutes, orders of magnitude too slow for real-time planning. I simplified this
problem in two ways:

1. precomputed simple curves for a predefined range of length and clothoid
sharpness as shown in

2. used the concept of a heuristic from A* to direct explore towards the target
point rather than growing the tree isotropically

An example of a tree grown by explore is shown in Figure

3

−15 −10 −5 0 5 10 15
0

2

4

6

8

10

12

14

16

18

20

Figure 2: The set of precomputed elementary paths used by explore.

Figure 3: An example of node placement by explore. The black dashes are
nodes, the green lines the edges between them, and the red line is the actual
trajectory chosen. Note that for clarity a short run time (0.02s) was used to
generate less nodes.

4

Initial development of the algorithm was done in open loop: a single path
was generated for a given situation and was viewed in Matlab to ensure it was
reasonable. A run time of 0.1 seconds is in line with our expectations for the
refresh rate of the planner and gives good solutions. Some of the results are
shown in Figure .

Figure 4: Example unit tests of the algorithm. Green is the legal driving zone,
blue are feasible paths and red is the path chosen to minimize the cost func-
tion. From the right these show: passing a parked car, turning right into a
narrow lane, reverse parking, a K-turn. Note that the right two simulations
were run with reversing allowed, and that these solutions come naturally from
the algorithm.

For closed loop, continuous, real-time planning the 2005 DGC planner re-
planned from scratch at every iteration. This is computationally wasteful and
can result in oscillations between local minima in the cost function on successive
planning cycles. As a more robust solution I chose to continually adapt the graph
as improved data from sensing is obtained. This requires several adaptations to
the open loop algorithm:

- once the vehicle has set off towards the first planned node the tree must
be “pruned” to remove nodes that would have been reached by any of the
other choices of initial node.

- as the map is updated it may be discovered that paths thought to be legal
are not so, and these must be deleted

- the cost of certain edges between nodes may change, for example if road-
finding misidentified a lane boundary, in which case the cost for all nodes
downstream must be updated

- the target waypoint may move (especially in a receding horizon frame-
work), requiring the search algorithm to be rerun and the heuristic, H, to
be recalculated for all nodes

5

These developments were tested in simulation using the simulator, trajFollower
and GUI modules from the DGC 2005 software. Careful algorithm design has
meant that the planner actually completes these operations at faster than 10Hz,
our original specification.

Testing has been undertaken on Alice, Team Caltech’s autonomous vehicle.
Two distinct testing frameworks were used: in the first, the output from the
spatial planner was used as a seed for the optimization planner; in the second,
it was the actual trajectory passed to trajFollower. Note that in the second case
manual throttle was used in the absence of a velocity planning algorithm.

The closed loop results on Alice showed convergence problems where the
planner would make significant changes to the upcoming trajectory which were
not seen in simulation. These may however have been an artifact of feeding
the planner with target positions that were too close to the vehicle. This result
raised the suggestion of reincorporating a solution to the convergence problem
used in DGC 2005: to associate a cost to the distance of each point on the
new trajectory from the nearest point on the previous trajectory. I hope this
will be unnecessary since the sampling of the map should ensure that a good
approximation to the global minimum is always found, preventing the algorithm
“getting stuck” in a local minimum.

While the main focus of this project has been on the spatial planning prob-
lem, I have also considered how the velocity planning problem might be ap-
proached if it was decided not to use the optimization based planner. Because
the spatial part of the problem is solved by this stage, the velocity planner
must consider the plane formed by s, the arc-length along the spatial path
from our current position, and time, t. This is a still a difficult non-linear
programming problem with non-holonomic constraints such as maximum accel-
eration/deceleration.

As a proof of concept prototype I designed an algorithm which optimizes
over just one parameter: current spatial derivative of velocity, k = dv

ds . Using k
rather than acceleration a greatly simplifies the problem so that closed analytic
expressions can be found for the vehicle’s projected speed and the time at which
points along the trajectory will be reached. This allows the algorithm to access
the CDynMap interface with vehicle tracking written by Martin Larsson. By
querying this “dynamic map”, which contains information on all the vehicles
being tracked, it is possible to determine whether it is feasible for the vehicle to
be at a particular space-time coordinate in the future.

We have discussed the interface between the traffic and path planning mod-
ules: our recommendation is that traffic planning passes path planning a set of
legal driving zones, defined as polygons, and a target waypoint in each zone. I
feel that vehicle avoidance should not be done at two levels, both in the pro-
posed traffic planning and path planning modules. Potentially the most coherent
method would be to have a dual layer dynamic map - one layer containing the
physical obstacles that we must avoid, the other containing obstacles represent-
ing the region around other vehicles that we should not enter if possible.

I have developed an intelligent spatial planner appropriate to use in an urban
driving environment that could be used as a seed for a second optimization stage

6

operating in space and time, or just time. There is still significant work to be
completed within the navigation architecture if Alice is to compete successfully
in DUC 2007.

- Decide on and develop a stage 2 approach: traversal time minimization,
pure velocity planning, or other
Interfaces: with road-finding using CVectorMap vectorized map frame-
works, with traffic planning using legal drives zones, with tracking and
prediction, with supervisory control and with trajFollower (reversing must
be incorporated)

-- Anisotropic growth of other vehicles in CDynMap to take into account
Alice’s orientation at each point along the spatial path

- Test the algorithm’s behavior in complex driving situations using the
newly developed traffic simulator

1 Methods

The following is a detailed technical description of the functionality of the spatial
planner.

1.1 Spatial planner

I have designed a spatial path planning algorithm which explores a tree of
elementary paths as defined in [5] and [6]. An elementary path is defined as
a curve with symmetric linear variation of curvature, κ with arc length, s:

κ(s) =
{

min(σs, κmax) 0 ≤ s < l
2

min(σ(l − s), κmax) l
2 ≤ s < l

(1)

where σ is known as the clothoid sharpness. The angle, θ, along the path is
found by integrating the curvature:

θ(s) =
∫ s

0

κ(s) ds (2)

Finally the (x, y) coordinate is found as follows:

x(s) =
∫ s

0
cos θ(s) ds, y(s) =

∫ s

0
sin θ(s) ds (3)

Both (2) and (3) are currently computed using trapezoidal numerical integra-
tion. More advanced approximations are unnecessary as it is not a requirement
for TrajFollower that the curvature is exactly linear. The planner precomputes
the elementary paths it will use, which have a finite range of sharpness, σ, and
arc length, l. The elementary paths therefore consist of straight lines, clothoids
(curves whose curvature varies linearly with path length) and arcs of circles.
The set of elementary paths currently implemented was shown in Figure .

7

The algorithm I have developed is based on Ariadne’s Clew [3] but with
key features of A*, specifically a cost function and a heuristic, an estimate of
the cost from the current landmark to the final landmark. We refer to nodes
of the tree as landmarks or postures to emphasize the fact that they include
orientation as well as position. The path cost function is calculated as the path
length plus a factor to penalize steering effort:

Gp(l, σ(s)) =
∫ l

0

ds + A

∫ l

0

σ(s) ds (4)

At each node a cost is added associated with the proximity to and alignment
with the nearest lane boundary.

Gn =
1

max(1.0, d2)
+ sin2(∆θ) (5)

where d is the distance to the nearest lane boundary and ∆θ is the difference
in yaw. The total cost is then calculated as G = Gp + l ·Gn.

Ariadne’s Clew uses two complementary algorithms, explore and search. ex-
plore generates a new landmark by traversing an elementary path from an ex-
isting landmark. It solves an optimization problem: maximising the minimum
distance from the new landmark to any of the existing ones. Every time explore
generates a new landmark, search checks whether a simple trajectory (see Sec-
tion 1.2) can be found from the new landmark to the target landmark, qt. More
details can be found in [3]. The algorithm I have developed works as follows,
where Λn denotes the set of most recently generated landmarks.

1. Add the start posture, qs to the tree, Λ, analogous to A*’s open list.
Λn = {qs}

2. If search finds a solution between Λn and qt, then calculate the complete
path and add it to the set of feasible paths.

3. If time is up, Go to 8.

4. Find the landmark, λl, which has the lowest F value, which has not yet
been explored.

5. Λn = explore(λl) and mark λl as having been explored.

6. For each λ in Λn calculate the cost, G from qs to λ, the heuristic, H from
λ to qt, and the total, F = G + H.

7. Go to 2

8. Return the feasible path with the lowest cost.

I will now explain the implementation of the search and explore algorithms in
more detail.

8

1.2 Search

The search algorithm is based on Kanayama’s method [7] but adapted for
clothoids rather than cubic spirals using results from [6]. search looks for a
simple path between from landmark p1 to landmark p2. We are only able to
join two landmarks using an elementary path as defined by (1) is they are sym-
metric. Two landmarks are said to be symmetric if and only if:

θ1 − β = −(θ2 − β) (6)

where θ1, theta2 and β are defined by Figure 1.2 and by:

tan β =
y2 − y1

x2 − x1
(7)

If the landmarks are not symmetric then we try to connect them using a bi-

Figure 5: Two symmetric postures and a connecting elementary path.
;

elementary path, i.e. the union of two elementary paths and an intermediate
landmark. Firstly we try to find this intermediate posture, q which is symmetric
to both p1 and p2. If the landmarks are parallel, i.e. the deflection, 2α = θ2 −
θ1 = 0, then this is straightforward. Kanayama [7] showed that the intermediate
posture lies on the line through p1 and p2, with the total curvature of the path
minimized at the midpoint.

For non-parallel postures, Kanayama [7] proved that the locus of q is a circle,
center, pc such that

pc =
(

xc

yc

)
=

1
2

(
x1 + x2 + c(y1 − y2)
y1 + y2 + c(x2 − x1)

)
(8)

where c = cot α. We choose the actual position of q on this circle by calculating
the cost of the path for different positions on the circle (separated by constant
arc length) and choosing the lowest.

9

Once the position of q is determined its orientation is determined from (6).
The parameters of the two elementary paths connecting p1 to q and q to p2

respectively are determined by:

σ = 4π sgn (α)
D1(|α|)2

r2
(9)

l = 2

√
2α

σ
(10)

where r is the distance from p1 to p2 and D1 is defined over [0, π].

D1(α) = cos αFC

(√
2α

π

)
+ sin αFS(

√
2α

π
) (11)

FC(x) =
∫ x

0

cos (
π

2
u2) du (12)

FS(x) =
∫ x

0

sin (
π

2
u2) du (13)

FC and FS are the Fresnel Cosine and Sine integrals, which I use a power series
expansion to calculate. Once these parameters have been found and check for
feasibility (maximum curvature and maximum sharpness) Equations (1-3) can
be used to generate the paths.

1.3 Explore

In [3] a genetic optimization algorithm tries to maximize the minimum distance
of the new landmark from any existing landmark. The advantage of this ap-
proach is that it adapts to the difficulty of the planning problem. A simple
situation such as going down a lane with no obstacles is solved using few land-
marks, because search rapidly finds complete feasible paths. However, a com-
plex maze-like situation requires more landmarks, effectively giving a greater
sampling resolution of the map.

Because my algorithm has to run in real-time I use a simpler explore function
at the cost of completeness. Firstly, rather than searching over all possible nodes
we use a concept from A*. For each node we calculate the traversal cost from
the start node, G, and an estimate of the traversal cost to the finish point,
known as the heuristic, H. F = G + H and the node with the lowest value of
F is explored first, because it is the most promising.

Secondly, instead of allowing a curve to have any clothoid sharpness and
length and thus requiring on-the-fly construction of these curves, a discrete
range of these parameters are permitted allowing curves corresponding to all
combinations of sharpness and length to be precomputed. The implementation
uses the set of elementary paths shown in . These are rotated and translated
to fit onto the landmark being explored. Paths which leave the legal driving
region or pass through obstacles are deleted. A single parameters controls the
resolution of the nodes in terms of the minimum distance that a new node is

10

allowed to be placed from any other existing nodes. This value is reduced only if
no more nodes can be placed as a result. Testing showed that this was a useful
technique to ensure the possible configuration spaced is filled completely before
sampling the map at greater resolution.

Both search and explore can operate with reversing allowed. This means
that from each landmark the algorithm can choose to go into reverse if the
“reversing allowed” flag is set to true.

1.4 DGC 2005 Stage 1 planner

It is worth briefly explaining the operation of the DGC 2005 stage 1 planner for
comparison. This simple algorithm undertakes the following steps:

- Generate initial seed from RDDF trackline

- Construct a grid of nodes aligned to trackline (excluding two circles on
either side of vehicle we are unable to enter due to the steering angle
constraint)

- Sample speed map at midway points between nodes and calculates traver-
sal cost

- Graph search for cheapest route with restriction of forward progress

- Outputs this trajectory to the refinement stage optimization planner to
be used as its seed

1.5 Prototype velocity planner

The velocity planner tries to maximise k = dv
ds . Acceleration can be expressed

in terms of k:

a =
dv

dt
(14)

=
dv

ds
· ds

dt
(15)

= k · v (16)

Defining s = 0 at our current position and integrating gives

v = v0 + k · s (17)

⇒ ds

v0 + k · s = dt (18)

Integrating again we find a closed expression for time which can be evaluated
and used as an input to CDynMap.

t− t0 =
1
k

ln|1 +
k

v0
· s| (19)

11

References

[1] Dmitriy L. Kogan and Richard M. Murray. Realtime path planning via non-
linear optimization methods. Master’s thesis, California Institute of Tech-
nology, 2005.

[2] Martin Larsson and Richard Murray. Optimization-based refinement stage
planner for an autonomous vehicle. Technical report, California Institute of
Technology.

[3] A. Scheuer and Th. Fraichard. Planning continuous-curvature paths for
car-like robots. volume 3, pages 1304–1311, 1996.

[4] Patrick Lester. A* pathfinding for beginners, 2005.

[5] A. Scheuer and Th. Fraichard. Continuous-curvature path planning for mul-
tiple car-like vehicles. pages 8–12, 1997.

[6] Alexis Scheuer. Planification de Chemins A Courbure Continue pour Robot
Mobile Non-holome. PhD thesis, 1998.

[7] Y. Kanayama and B. I. Hartman. Smooth local path planning for au-
tonomous vehicles. volume 3, pages 1265–1270, 1989.

Acknowledgments

I would like to thank my mentor Richard Murray for his enthusiasm and pa-
tience devoted to Team Caltech. Anyone with that much on their plate who is
prepared to sit down with you to find that last Seg Fault is doing a good job!
I thank Martin for fighting the monstrous optimization based planner despite
my constant attack on its usefulness in for urban driving (I think he agreed
eventually). I thank Noel duToit and Joel Burdick for their navigation team
guidance (and pizza). Last but not least I thank Albert and Ken for looking
after Alice for us and keeping us and our code branches safe on the field tests.

12

