
Serial and Parallel Inference
in Sparse Nonparametric Latent Factor Models

applied to Gene Expression Modeling
First Year Report

David Knowles
Supervisor: Professor Zoubin Ghahramani

Cambridge University Engineering Department

October 27, 2010

Abstract

This report presents the core research I have conducted this year. Chap-
ter 1 describes the background literature to the research. The probabilistic
formulation Principal Components Analysis and Factor Analysis are intro-
duced. Previous work on introducing sparsity in these models and inferring
the latent dimensionality is explored. Chapter 2 presents my main individual
project, extending work from my Part IIB project, developing nonparamet-
ric sparse Factor Analysis and comparing its performance modeling gene ex-
pression data to related models. Chapter 3 presents a collaborative project,
undertaken with Finale Doshi and Shakir Mohamed, where we explore tech-
niques for parallelising Bayesian inference in Indian Buffet Process models.
Finally, Chapter 4 presents my plan for the remaining duration of the PhD.

Chapter 1

Literature Review

The central dogma of biology is that DNA is transcribed into “messenger”
RNA, and RNA is translated into protein which performs the work of the
cell. Of course, the reality is a little more complicated than that (RNA
itself can have a functional role for example) but its a good approximation.
Gene expression microarrays measure how much messenger RNA is present
for each gene, which is a reasonable proxy for how much a gene is being
transcribed and translated. This provides a rich source of information on the
state of cells within a tissue. A gene expression microarray has thousands of
probes - sequences of RNA complementary to the mRNA (messanger RNA,
a intermediate product of gene transcription) of particular genes.

A microarray typically might have 10000 probes, making analysing this
data a very high dimensional problem. We will use a family of linear models.
We hypothesise that each sample is a linear combination of “gene signatures”,
perhaps representing underlying biological processes (such as the activity of
a particular transcription factor or the phase of the cell cycle) or confounding
experimental factors (such as the age of the patient). We will show that we
can infer both these gene signatures and their activation level for each sample
from data.

Principal Components Analysis (PCA), Factor Analysis (FA) and Inde-
pendent Components Analysis (ICA) are models which explain observed
data, yn ∈ RD, in terms of a linear superposition of independent hidden
factors, xn ∈ RK . In our setting of gene expression modelling the hidden
factors correspond to underlying biological processes or confounding experi-
mental factors. The number of probes is D, the number of samples is N and
the number of underlying gene signatures (latent factors) is K. The model

1

is:

yn = Gxn + εn (1.1)

where G is the factor loading matrix and εn is a noise vector, usually assumed
to be Gaussian. Factor Analysis, and the closely related Principal Compo-
nents Analysis (PCA) are become fundamental data analysis tools, used in
data compression, image processing, ecology, genetics, portfolio management,
and even time series data.

1.1 Principal Components Analysis

PCA is commonly derived in two complimentary fashions. The first, de-
scribed in Hotelling [1933], is as the normalised linear projection which max-
imises the the variance in the projected space. Consider N vectors yn with
dimension D and sample mean ȳ. The projection into the principal compo-
nents space is xn = GT (yn − ȳ), where xn is the K-dimensional vector of
principal components, and G is D ×K. The rows wj of G are constrained
to have unit length so that the problem is well defined. It can be shown that
maximising the variance |

∑
n xnx

T
n/N | (where |·| denotes the determinant) is

equivalent to setting the rows wj of G equal to the eigenvectors of the sample
covariance matrix S =

∑
n(yn− ȳ)(yn− ȳ)T/N with the largest eigenvalues.

The second derivation, dating back to Pearson [1901], is as the orthogonal
projection which minimises the squared reconstruction error

∑
||yn − ŷn||2

where ŷn = Gxn + ȳ.
Bishop and Tipping, and Roweis simultaneously noted the interpretation

of Principal Components Analysis as Maximum Likelihood estimation in an
appropriate probabilistic model [Tipping and Bishop, 1999; Roweis, 1998].
In both PCA and FA the latent factors are given a standard (zero mean,
unit variance) normal prior. The only difference is that in PCA the noise
is isotropic, whereas in FA the noise covariance is only constrained to be
diagonal.

1.2 Factor Analysis

Factor analysis (FA) was originally developed by the psychology community
attempting to understand intelligence in terms of a small number of under-
lying “factors” [Young, 1941]. In Young’s formulation, the xn are viewed

2

as parameters to be estimated. More recently, the convention has been to
consider xn as latent variables which can be given a prior, usually standard
normal in each element, and marginalised out. The latent factors are usually
considered as random variables, and the mixing matrix as a parameter to
estimate.

1.3 Inferring the latent dimensionality

Bishop [1999] extends the probabilistic PCA formulation of Tipping and
Bishop [1999] to allow implicit inference of the latent dimensionality. Rather
than performing a discrete model search, which could be performed for exam-
ple by Bayesian model selection, Bishop uses the Automatic Relevance Deter-
mination (ARD) framework introduced by Mackay and Neal for complexity
control in neural networks [Mackay, 1994]. Each column gk of G is given a
prior distribution of N(0, α−1k I). Thus αk is the precision (inverse variance)
of gk. If αk is inferred to be large, then gk is forced towards zero, effec-
tively suppressing this dimension. In the original ARD framework proposed
by Mackay, Type-II maximum likelihood estimation of the α’s is performed
based on a Laplace-style local Gaussian approximation to a mode of the pos-
terior of G. Bishop follows this framework but also suggests Gibbs sampling
or variational Bayes as alternative strategies to approximately marginalise
out G.

Minka [2000] shows that for probabilistic PCA, Bayesian model selection
can be performed efficiently using a Laplace approximation of the model
evidence. Laplace approximation proceeds by fitting a Gaussian distribution
to the posterior mode by matching the second derivatives of the likelihood.
Laplace’s method is more accurate if a parameterisation can be found where
the Gaussian approximation to the posterior is more reasonable. The noise
variance σ2 is a positive scalar. However, its logarithm, log σ2 can take any
real value and it is therefore more reasonable to approximate the posterior
as Gaussian. Minka uses an improper uniform prior on m, the latent mean.
The mixing matrix G is decomposed as

U(L− σ2Ik)
1/2R

where U is an orthogonal basis (i.e. UTU = I), L is a diagonal scaling
matrix with positive diagonal elements li, and R is an arbitrary and irrelevant
rotation matrix. The condition UTU = I restricts U to a subspace known as

3

the Stiefel manifold, which has a finite area given by an analytic expression.
The matrix U can therefore be given a uniform prior distribution on the
Stiefel manifold, with normalised density of one over the area. Parameterising
the manifold in Euler vector co-ordinates also makes Laplace’s method more
accurate. The fact that any column of U can be negated without changing
the model means that there are 2k identical modes in the posterior. To
account for these the result from Laplace’s method is simply multiplied by
2k.

1.4 Shrinkage

Much recent work in regression models has concentrated on the concept of
shrinkage. The idea is that by shrinking the estimates of the regression coeffi-
cients towards zero, one can significantly reduce the variance of an estimator
at only a small cost in slightly increased bias. The classic example is the Stein
estimator for the mean of multivariate Gaussian, which has lower expected
loss (measured as the Euclidean distance between the true and estimated
values of the mean), than the MLE for any value of θ [James and Stein,
1961]. From a frequentist perspective this appears completely unintuitive,
but from a Bayesian perspective it appears much more reasonable. Assume
we observe vector X drawn from a multivariate normal of dimension p, with
mean θ and identity covariance matrix. The MLE of θ is then just X, but
the Stein estimator

θs =

(
1− p− 2

||X||2

)
X

The fact that this estimator performs better than the ML is termed shrinkage,
because the estimator is shrunk towards 0. The Bayesian approach would be
to put a Gaussian prior on θ, so

θ ∼ Np(θ; 0, λ−1I)

where λ is a precision (inverse variance). In a fully Bayesian framework a
Gamma prior would be put on λ, resulting in a student-t marginal prior
on θ. Unfortunately one would then have to resort to sampling to infer
the posterior mean of θ since the product of a Gaussian and a student-t
distribution cannot be integrated analytically. However, we can optimise λ.
Assuming λ is known, then the posterior of θ is

P (θ|X,λ) ∝ P (X|θ)P (θ|λ) = Np(θ; (1 + λ)−1X, (1 + λ)−1)

4

Thus the expected value of θ is

E(θ|X) = (1 + λ)−1X

To find the MLE of λ first integrate out θ:

P (X|λ) =

∫
P (X|θ)P (θ|λ)dθ

= Np(X; 0, λ−1x I)

where

λx =
λ

1 + λ

An unbiased estimate of λx is given by

λML
x =

||X||2

p− 1

Substituting for λ and rearranging gives

λML =

(
||X||2

p− 1
− 1

)−1
Substituting into the expression for E(θ|X) above and rearranging gives

E(θ|X) =

(
1− p− 1

||X||2

)
X

which is very close to the Stein estimate. Some different choice of prior on λ
would result in a MAP estimate which would give the p−2 term of the Stein
estimator. The Stein estimator, which has unintuitively desirable properties
in a frequentist framework, is intuitively a sensible estimator in a Bayesian
framework. This motivates using sparsity in a Bayesian context.

1.5 Sparsity

Shrinkage is closely related to the concept of sparsity, the idea that only
some small proportion of coefficients should be non-zero. There are three
main advantages to “sparse” models:

5

1. Interpretability. Having less active links in a model makes it easier to
interpret.

2. Intuitive. Many real-world systems are sparse. In genetics, transcrip-
tion factors only bind to specific motifs, and therefore only regulate a
small set of genes. In social networks, individuals only interact with a
small number of friends relative to the total population. In finance, a
company’s performance is driven by only a few key factors. Incorpo-
rating this prior expectation of sparsity into a model is therefore often
very natural.

3. Improved predictive performance. Sparsity helps prevent overfitting
because coefficients that would be non-zero only because of noise in
the data are forced to zero.

There are two main types of sparse model, which we refer to as incor-
porating “hard” or “soft” sparsity. Hard sparsity means that coefficients
have finite mass on zero, the main example being so-called “slab-and-spike”
models where the coefficient prior is a mixture between a continuous distri-
bution and a delta-spike at 0 [Ishwaran and Rao, 2003, 2005]. Soft sparsity
means that the coefficient priors have heavy tails, and so a prior are likely to
have either very small (but non-zero) or large values. Examples include the
Laplace distributon corresponding to LASSO regression [Tibshirani, 1994],
the Student-t distribution [Geweke, 1993], or the Horseshoe prior [Carvalho
et al., 2009]. The Student-t distributed can be efficiently modeled as a scale
mixture of Gaussians. The inverse variance (precision) parameter of the
Gaussian is given a Gamma prior. Figure 1.1 shows the density of two inde-
pendent student-t variables with degrees of freedom a = 0.05. Note how the
mass is concentrated on the axes where one of the components is close to 0.

Another definition of hard vs. soft sparsity would be to consider whether
the algorithm output can have coefficients that are exactly zero. Bayesian
inference will generally not give this result, because the posterior given data
will specify only a probability of a coefficient being non-zero. Maximum
likelihood or maximum a posterior (MAP) estimation however may give zero
coefficients for certain types of prior (regularisation).

The Student-t distribution is given by

6

x

−4
−2

0
2

4

y

−4

−2

0

2

4z

0.002

0.004

0.006

0.008

0.010

Figure 1.1: The density of two independent Student-t variables with 0.05
degrees of freedom.

7

T (x; a, b) =
Γ(a+1

2
)

b
√
aπΓ(a/2)

[
1 +

1

a
(x/b)2

]−a+1
2

(1.2)

This is achieved as a scale mixture by setting:

x ∼ N(x; 0, λ−1) (1.3)

λ ∼ G(λ;
a

2
,

2

ab2
) (1.4)

The horseshoe prior is another scale mixture of normal prior which has
recently been proposed [Carvalho et al., 2009]. The horseshoe prior is defined
by:

x|s ∼ N(0, s2) (1.5)

s ∼ C+(0, 1) (1.6)

where the standard deviation s has a standard half-Cauchy distribution,
C+(0, 1). There is no closed form for the marginal density, but is approxi-
mately log(1 + 2/x2). The horseshoe prior has infinite density at x = 0, but
its tails behave like the Cauchy distribution (the Cauchy distribution is the
special case of the Student-t distribution with degrees of freedom a = 1. The
normal, Laplace, Cauchy, and horseshoe priors are shown in Figure 1.2. The
tail of the normal prior falls off most sharply, as e−x

2
, which will result in

the greatest bias for large coefficients. Next is the Laplace prior, where the
tails decay as e−|x|. The Cauchy and horseshoe priors both have tails which
fall off as 1/x2. This slow decay results in reduced bias.

1.6 Sparse regression models

Ridge regression, which involves giving an L2-norm penalty (i.e. sum of
squares) to the size of the regression coefficients, corresponds to maximum
a posterior (MAP) estimation where the coefficients are given a zero mean
Gaussian prior. The ratio between the prior variance of the coefficients and
the noise variance corresponds to the regularisation constant in ridge re-
gression. Ridge regression however only shrinks the coefficients, it does not

8

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

de
ns

ity

Laplace(1)
Normal(0,1)
Cauchy(1)
Horseshoe

(a) Comparison of sparse priors

−4 −2 0 2 4

−
5

−
4

−
3

−
2

−
1

lo
g(

de
ns

ity
)

Laplace(1)
Normal(0,1)
Cauchy(1)
Horseshoe

(b) Log density shows tail behaviour

Figure 1.2: Comparing the normal, Laplace, Cauchy and horseshoe priors.

result in “zero-forcing”, which may also be desirable. This is the advantage
of LASSO regression [Tibshirani, 1994], where an L1 penalty (i.e. sum of ab-
solute values) is used on the coefficients. This results in zero forcing because
contours of the penalty function have “corners” on the coordinate axes, as
shown in Figure 1.3.

Of course there is a whole range of Lp-norms that could be used. How-
ever, the optimization problem is only convex for p ≥ 1, and the penalty
function contours only have corners, and therefore perform zero forcing, for
p ≤ 1, making p = 1 a very natural choice in this framework. LASSO regres-
sion corresponds to MAP estimation where the coefficient prior is Laplacian.
LASSO models can be fit efficiently using Least Angle Regression [Efron
et al., 2004] when the likelihood function is Gaussian. The covariates most
correlated with the response are added in turn, using an analytic expression
to calculate the optimal coefficient.

1.7 Sparse Factor Analysis

The idea of using a Student-t prior, decomposed as a scale mixture of normal,
in factor analysis, seems to have been simultaneously proposed in Fokoue
[2004] and Fevotte and Godsill [2006]. The elements of the mixing matrix
G are given a Student-t distribution, and efficient inference is performed by

9

x

y

 1

 2

 3

 4

 5

 6

 6

 6

 6

 7

 7

 7

 7

 8

 8

 8

 8

 9

 9

 9

 9

−4 −2 0 2 4

−
4

−
2

0
2

4

(a) Contours of the L2 norm

x

y

 1

 2

 3

 4

 5

 6

 6

 6

 6

 7

 7

 7

 7

 8

 8

 8

 8

 9

 9

 9

 9

−4 −2 0 2 4

−
4

−
2

0
2

4

(b) Contours of the L1 norm

x

y 1

 2

 3

 4

 5

 6 7 7 8 9

−4 −2 0 2 4

−
4

−
2

0
2

4

(c) Log likelihood function

x

y

 4

 6

 8

 10

 10

 12

 1
2

 14
 16 18 18 20 20 22 22

−4 −2 0 2 4

−
4

−
2

0
2

4

(d) Objective + L2 norm

x

y 4

 6

 8

 10

 12

 14
 16 18 18 20 20 22 22 24

−4 −2 0 2 4

−
4

−
2

0
2

4

(e) Objective + L1 norm

Figure 1.3: Illustration of the difference between L1 (LASSO) and L2 (ridge
regression) norms. Each plot shows the contours of a function.

10

introducing a per element precision as in Equation 1.3. Fokoue [2004] and
Fevotte and Godsill [2006] perform Gibbs sampling, whereas Cemgil et al.
[2005] use variational EM [Wainwright and Jordan, 2003; Ghahramani and
Beal, 2001].

The Bayesian Factor Regression Model (BFRM) of West et al. [2007] is
closely related to the finite version of the model we will describe. The key
difference is the use of a hierarchical sparsity prior. Each element of the
mixing matrix G has prior of the form

gdk ∼ (1− πdk)δ0(gdk) + πdkN
(
gdk; 0, λ−1k

)
In BFRM a hierarchical prior is used:

πdk ∼ (1− ρk)δ0(πdk) + ρkBeta(πdk; am, a(1−m))

where ρk ∼ Beta(sr, s(1 − r)). Non-zero elements of πdk are given a diffuse
prior favouring larger probabilities (a = 10,m = 0.75 are suggested in West
et al. [2007]), and ρk is given a prior which strongly favours small values,
corresponding to a sparse solution (e.g. s = D, r = 5

D
).

Note that on integrating out πdk, the prior on gdk is

gdk ∼ (1−mρk)δ0(gdk) +mρkN
(
gdk; 0, λ−1k

)
1.8 The Indian Buffet Process

Our model will be based on the Indian Buffet Process (IBP). The IBP defines
a distribution over infinite binary matrices, which can be used to construct
latent feature models where the number of features is unbounded a priori.
The Indian Process Process (IBP) was originally introduced by Griffiths and
Ghahramani [2005]. A two parameter generalisation is developed in [Ghahra-
mani et al., 2007], and a stick-breaking construction which motivates a slice
sampling algorithm in [Teh et al., 2007].

1.8.1 Start with a finite model.

We derive the distribution on an infinite binary matrix Z by first defining a
finite model with K features and taking the limit as K →∞. We then show
how the infinite case corresponds to a simple stochastic process.

11

We have D dimensions and K hidden sources. Element zdk of matrix Z
tells us whether the hidden factor k contributes to dimension d. We assume
that the probability of factor k contributing to any dimension is πk, and that
the rows are generated independently. We find

P (Z|π) =
K∏
k=1

D∏
d=1

P (zdk|πk) =
K∏
k=1

πmkk (1− πk)D−mk (1.7)

where mk =
∑D

d=1 zdk is the number of dimensions to which source k con-
tributes. The inner term of the product is a binomial distribution, so we
choose the conjugate Beta(r, s) distribution for πk. For now we take r = α

K

and s = 1, where α is the strength parameter of the IBP. The model is
defined by

πk|α ∼ Beta
(α
K
, 1
)

(1.8)

zdk|πk ∼ Bernoulli(πk) (1.9)

Due to the conjugacy between the binomial and beta distributions we are
able to integrate out π to find

P (Z) =
K∏
k=1

α
K

Γ(mk + α
K

)Γ(D −mk + 1)

Γ(D + 1 + α
K

)
(1.10)

where Γ(.) is the Gamma function.

1.8.2 Take the infinite limit.

Griffiths and Ghahramani [2005] define a scheme to order the non-zero rows
of Z which allows us to take the limit K →∞ and find

P (Z) =
αK+∏
h>0Kh!

exp (−αHD)

K+∏
k=1

(D −mk)!(mk − 1)!

N !
(1.11)

where K+ is the number of active features (i.e. non-zero columns of Z,
HD =

∑D
j=1

1
j

is the D-th harmonic number, and Kh is the number of rows
whose entries correspond to the binary number h.

12

1.8.3 Go to an Indian Buffet.

This distribution corresponds to a simple stochastic process, the Indian Buf-
fet Process. Consider a buffet with a seemingly infinite number of dishes
(hidden sources) arranged in a line. The first customer (observed dimension)
starts at the left and samples Poisson(α) dishes. The ith customer moves
from left to right sampling dishes with probability mk

i
where mk is the num-

ber of customers to have previously sampled dish k. Having reached the end
of the previously sampled dishes, he tries Poisson(α

i
) new dishes. Figure 1.4

shows two draws from the IBP for two different values of α.

factors (dishes)

g
e
n
e
s
 (

c
u
s
to

m
e
rs

)

5 10 15 20

5

10

15

20

25

30

35

40

45

50

(a) α = 4

factors (dishes)

g
e
n
e
s
 (

c
u
s
to

m
e
rs

)

10 20 30 40

5

10

15

20

25

30

35

40

45

50

(b) α = 8

Figure 1.4: Draws from the one parameter IBP for two different values of α.

If we apply the same ordering scheme to the matrix generated by this
process as for the finite model, we recover the correct exchangeable distri-
bution. Since the distribution is exchangeable with respect to the customers
we find by considering the last customer that

P (zkt = 1|z−kn) =
mk,−t

D
(1.12)

where mk,−t =
∑

s 6=t zks, which is used in sampling Z. By exchangeability and
considering the first customer, the number of active sources for dimension fol-
lows a Poisson(α) distribution, and the expected number of entries in Z isDα.

13

We also see that the number of active features, K+ =
∑D

d=1 Poisson(α
d
) =

Poisson(αHD).

1.8.4 Two parameter generalisation.

A problem with the one parameter IBP is that the number of features per
object, α, and the total number of features, Nα, are both controlled by α
and cannot vary independently. Under this model, we cannot tune how likely
it is for features to be shared across objects. To overcome this restriction
we follow Ghahramani et al. [2007], introducing β, a measure of the feature
repulsion. The ith customer now samples dish k with probability mk

β+i−1 and

samples Poisson(αβ
β+i−1) new dishes.

Figure 1.5 shows draws from the two parameter IBP for two different
values of β. For β < 1 we get increased sharing of sources amongst data
points, as in Figure 1.5(a), and for β > 1 we get reduced sharing, as in
Figure 1.5(b).

(a) α = 8, β = 0.1 (b) α = 8, β = 4

Figure 1.5: Draws from the one parameter IBP for two different values of α.

Following the same steps as for the one parameter IBP, we find

P (zkt = 1|z−kn, β) =
mk,−t

β +D − 1
(1.13)

The marginal probability of Z becomes

P (Z|α, β) =
(αβ)K+∏
h>0Kh!

exp (−αHD(β))

K+∏
k=1

B(mk, D −mk + β) (1.14)

14

where C is a constant with respect to α and β, and HD(β) =
∑D

j=1
β

β+j−1 .

The expected overall number of active features is now K̄+ = αHD(β). We will
derive all our results for the two parameter case because it is straightforward
to recover the one parameter case by setting β = 1.

1.8.5 Stick Breaking Construction

An alternative representation of the IBP has recently been proposed for the
one-parameter IBP in Teh et al. [2007], which allows a slice sampling method
to be derived allowing potentially faster mixing in the non-conjugate source
distribution case. Again we start with the finite case, but now construct a
decreasing ordering of the πk of Equation (1.8): π(1) > π(2) > · · · > π(K).
In Teh et al. [2007] it is shown that µ(k) obey the following equation:

ν(k) ∼ Beta (α, 1) (1.15)

π(k) = ν(k)µ(k−1) =
k∏
l=1

ν(l) (1.16)

The analogy we use is as follows. We start with a stick of length one, and
break off a length ν(1), and record its length as π(1). At iteration k, we break
off a length ν(k) relative to the remaining length, and record its length as
π(k).

1.8.6 Accelerated sampling

Many serial procedures have been developed for inference in the IBP, includ-
ing variants of Gibbs sampling [Griffiths and Ghahramani, 2005; Doshi-Velez
and Ghahramani, 2009], which may be augmented with Metropolis split-
merge proposals [Meeds et al., 2006], slice sampling [Teh et al., 2007], parti-
cle filtering [Wood and Griffiths, 2007], and variational inference [Doshi-Velez
et al., 2009]. With the exception of the accelerated Gibbs sampler of Doshi-
Velez and Ghahramani [2009], these methods have been applied to datasets
with less than 1,000 observations.

The motivation for the accelerated sampler is the following, in the context
of the bilinear model X = ZA + ε. Here X is the N × D data matrix,
A is a matrix with a priori standard Gaussian independent variables, and
ε is isotropic Gaussian noise. The uncollapsed sampler (where we sample

15

A

Z−w X−w

XwZw

α

Figure 1.6: Graphical model for an IBP latent factor model, showing the ob-
servations and the feature-assignment matrix Z split in two. In this drawing,
the observations corresponding to ZW are imagined to have occured “after”
Z−W in the generative sampling process, and thus depend on the counts in
Z−W [From Doshi-Velez and Ghahramani [2009]].

both Z and A) has very poor mixing properties, because the product ZA
is constrained equal to the data matrix X (apart from some small noise
term). This makes it very difficult for the chain to explore the full parameter
space because Z and A are highly correlated in the posterior distribution.
The collapsed sampler has much better mixing properties because it avoid
this problem, but at great computational cost: for each element of Z that
is sampled the calculation involves the entire X matrix, rather than just
the row associated with that particular element. The accelerated sampler
aims to achieve the best of both worlds: the flexibility and therefore the
mixing properties of the collapsed sampler with only a slightly increase in
computational load compared to the uncollapsed sampler.

The accelerated sampler proceeds as follows. Following Doshi-Velez and
Ghahramani [2009]: let XW denote some set of W observations that contains
the observation n. The exchangeability of the IBP allows us to assume with-
out loss of generality that XW were the final W observations and observation
n is the last observation sampled in the generative process. To sample Z we

16

need p(Znk = 1|Z−nk, X), given by Bayes rule:

p(Znk = 1|Z−nk, X) ∝ p(Znk|Z−nk)p(X|Z)

=
mk

n

∫
A

p(X|Z,A)p(A)dA.

We split the data into sets XW and X−W and apply the conditional indepen-
dencies implied in figure 1.6 to get

p(Znk = 1|Z−nk, X) (1.17)

=
mk

n

∫
A

p(XW , X−W |ZW , Z−W , A)p(A)dA (1.18)

=
mk

n

∫
A

p(XW |ZW , A)p(X−W |Z−W , A)p(A)dA (1.19)

Finally, we apply Bayes rule again to p(X−W |Z−W , A):

p(Znk = 1|Z−nk, X) (1.20)

=
mk

n

∫
A

p(XW |ZW , A)p(A|Z−W , X−W)p(X−W |Z−W)dA

∝ mk

n

∫
A

p(XW |ZW , A)p(A|X−W , Z−W)dA

Thus, given the posterior distribution p(A|X−W , Z−W), it is possible to com-
pute p(Znk = 1|Z−nk, X) without involving the remaining data, X−W .

The accelerated sampler proceeds by maintaining the distribution P (A|X,Z).
For conjugate exponential models the contribution of the window ZW is eas-
ily removed to give p(A|X−W , Z−W). This is used for sampling according
to Equation 1.20, and P (A|X,Z) is again calculated using only a rank-one
update depending on the new rows ZW .

17

Chapter 2

Non-parametric sparse factor
models

In our previous work [Knowles and Ghahramani, 2007] we investigated the
use of sparsity on the latent factors xn, but this formulation is not appro-
priate in the case of modelling gene expression, where a transcription factor
will regulate only a small set of genes, corresponding to sparsity in the fac-
tor loadings, G. Here we propose a novel approach to sparse latent factor
modelling where we place sparse priors on the factor loading matrix, G. The
Bayesian Factor Regression Model of West et al. [2007] is closely related
to our work in this way, although the hierachical sparsity prior they use is
somewhat different, see Section 1.7. An alternative “soft” approach to incor-
porating sparsity is to put a Gamma(a, b) (usually exponential, i.e. a = 1)
prior on the precision of each element of G independently, resulting in the
elements of G being marginally Student-t distributed a priori: see Section
1.5 for more details. We compare these three sparsity schemes empirically in
the context of gene expression modelling.

We use the Indian Buffet Process [Griffiths and Ghahramani, 2005], which
defines a distribution over infinite binary matrices, to provide sparsity and a
framework for infering the appropriate latent dimension of the dataset using a
straightforward Gibbs sampling algorithm. The Indian Buffet Process (IBP)
allows a potentially unbounded number of latent factors, so we do not have
to specify a maximum number of latent dimensions a priori. We denote our
model “nsFA” for “non-parametric sparse Factor Analysis”. Our model is
closely related to that of Rai and Daumé III [2008], and is a simultaneous
development.

18

2.1 The Model

We will define our model in terms of Equation 1.1. Let Z be a binary matrix
whose (d, k)-th element represents whether observed dimension d includes
any contribution from factor k. We then model the mixing matrix by

p(Gdk|Zdk, λk) = ZdkN
(
Gdk; 0, λ−1k

)
+ (1− Zdk)δ0(Gdk) (2.1)

where λk is the inverse variance (precision) of the kth factor and δ0 is a delta
function (point-mass) at 0. Distributions of this type are sometimes known
as “spike and slab” distributions. We allow a potentially infinite number of
hidden sources, so that Z has infinitely many columns, although only a finite
number will have non-zero entries. This construction allows us to use the
IBP to provide sparsity and define a generative process for the number of
latent factors.

We will now describe the modelling choices available for the rest of the
model. We assume independent Gaussian noise, εn, with diagonal covariance
matrix Φ. We find that for many applications assuming isotropic noise is too
restrictive, but this option is available for situations where there is strong
prior belief that all observed dimensions should have the same noise variance.
The latent factors, xn, are given Gaussian priors.

2.2 Inference

Given the observed data Y, we wish to infer the hidden sources X, which
sources are active Z, the mixing matrix G, and all hyperparameters. We
use Gibbs sampling, but with Metropolis-Hastings (MH) steps for sampling
new features. We draw samples from the marginal distribution of the model
parameters given the data by successively sampling the conditional distribu-
tions of each parameter in turn, given all other parameters.

Since we assume independent Gaussian noise, the likelihood function is

P (Y|G,X,ψ) =
N∏
t=1

1

(2π)
D
2 |ψ| 12

exp

(
−1

2
(yn −Gxn)Tψ−1(yn −Gxn)

)
(2.2)

Mixture coefficients. We first derive a Gibbs sampling step for the indi-
vidual elements of the IBP matrix, Z. Integrating out the (d, k)-th element

19

Figure 2.1: Graphical model

of the factor loading matrix, gdk, in Equation 2.1 we obtain

P (Y|Zdk = 1,−)

P (Y|Zdk = 0,−)
=

∫
P (Y|gdk,−)N

(
gdk; 0, λ−1k

)
dgdk

P (Y|gdk = 0,−)
(2.3)

=

√
λk
λ

exp

(
1

2
λµ2

)
(2.4)

where − denotes the current state of the chain excluding those variables

explicitly mentionned, λ = ψ−1d XT
k:Xk: + λk and µ =

ψ−1
d

λ
XT
k:Êd: with the

matrix of residuals Ê = Y − GX evaluated with Gdk = 0. The dominant
calculation is that for µ since the calculation for λ can be cached. This
operation is O(N) and must be calculated D×K times, so sampling the IBP
matrix, Z and factor loading matrix, G is order O(NDK).

From the exchangeability of the IBP we see that the ratio of the priors is

P (Zdk = 1|−)

P (Zdk = 0|−)
=

m−d,k
N − 1−m−d,k

(2.5)

where m−d,k is the number of dimensions for which factor k is active, exclud-
ing the current dimension d. Multiplying Equations 2.4 and 2.5 gives the

20

expression for the ratio of posterior probabilities for Zdk being 1 or 0, which
is used for sampling. If Zdk is set to 1, we sample gdk|− ∼ N (µ, λ−1) with
µ, λ defined as for Equation 2.4.

Adding new features. Z is a matrix with infinitely many columns, but
the non-zero columns contribute to the likelihood and are held in memory.
However, the zero columns still need to be taken into account since the
number of active factors can change. Let κd be the number of columns of Z
which contain 1 only in row d, i.e. the number of features which are active
only for dimension d. Note that due to the form of the prior for elements of
Z in Equation 2.5, κd = 0 for all d after a sampling sweep of Z.

Figure 2.2 illustrates κd for a sample Z matrix.

Figure 2.2: A diagram to illustrate the definition of κd, for d = 10.

New features are proposed by sampling κd with a MH step. It is possible
to integrate out either the new elements of the mixing matrix, g (a 1 × κd
vector), or the new rows of the latent feature matrix, X′ (a κd ×N matrix),
but not both. Since the latter is likely to have higher dimension, we choose
to integrate out X′ and include gT as part of the proposal. Thus the proposal

21

is ξ = {κd,g}, and we propose a move ξ → ξ∗ with probability J(ξ∗|ξ). In
this case ξ = ∅ since as noted above κd = 0 initially. The simplest proposal,
following Meeds et al. [2006], would be to use the prior on ξ∗, i.e.

J(ξ) = P (κd|α) · p(g|κd, λk) = Poisson (κd; γ) ·N(g; 0, λ−1k)

where γ = α
D−1 .

Unfortunately, the rate constant of the Poisson prior tends to be so small
that new features are very rarely proposed, resulting in slow mixing. To
remedy this we modify the proposal distribution for κd and introduce two
tunable parameters, π and λ.

J(κd) = (1− π)Poisson (κd;λγ) + π1(κd = 1) (2.6)

Thus the Poisson rate is multiplied by a factor λ, and a spike at κd = 1
is added with mass π.

The proposal is accepted with probability min (1, aξ→ξ∗) where

aξ→ξ∗ =
P (ξ∗|rest, Y)J(ξ|ξ∗)
P (ξ|rest, Y)J(ξ∗|ξ)

=
P (Y |ξ∗, rest)P (κd|α)p(g|κd, λk)
P (Y |rest)J(κd)p(g|κd, λk)

= al · ap

(2.7)

where

al =
P (Y |ξ∗, rest)

P (Y |rest)
(2.8)

ap =
P (κd|α)

J(κd)
=

Poisson (κd; γ)

Poisson (κd;λγ)
(2.9)

Note that we can simply take J(ξ|ξ∗) = 1 since ξ = ∅. To calculate al we
need the collapsed likelihood under the new proposal:

P (Yd:|ξ∗,−) =
N∏
n=1

∫
P (Ydn|ξ∗,x′n,−)P (x′n)dx′ (2.10)

=
N∏
n=1

(2πψ−1d)−
1
2 (2π)

κd
2 |M|−

1
2 exp

(
1

2
(mT

nMmn − ψ−1d Ê2
dn)

)
(2.11)

22

where M = ψ−1d ggT + Iκd and mn = M−1ψ−1d gÊdn where the matrix of

residuals Ê = Y − GX. Note that : denotes taking a “slice” of a matrix.
The likelihood under the current sample is:

P (Yd:|ξ,−) =
N∏
n=1

(2πψ−1d)−
1
2 exp

(
−1

2
ψ−1d Ê2

dn

)
(2.12)

Substituting these likelihood terms into the expression for the ratio of likeli-
hood terms, al, gives

al = (2π)
Nκd
2 |M|−

N
2 exp

(
1

2

∑
n

mT
nMmn

)
(2.13)

We found that appropriate scheduling of the sampler improved mixing,
particularly with respect to adding new features. The final scheme we settled
on is described in Algorithm 1.

IBP parameters. We can choose to sample the IBP strength parame-
ter α, with conjugate Gamma(e, f) prior (note that we use the inverse scale
parameterisation of the Gamma distribution). The conditional prior of Equa-
tion (1.11), acts as the likelihood term and the posterior update is as follows:

P (α|Z) ∝ P (Z|α)P (α) = Gamma (α;K+ + e, f +HD) (2.14)

where K+ is the number of active sources.
If the two parameter IBP (see Section 1.8.4) is being used, we can sample

β by a Metropolis-Hasting’s step with acceptance probability min (1, rβ→β∗).
By Equation (2.7) we know that setting the proposal distribution equal to
the prior, i.e. J(β∗|β) = P (β∗) = Gamma (1, 1), results in rβ→β∗ being equal

to the ratio of likelihoods, in this case P (Z|α,β∗)
P (Z|α,β) as given in Equation (1.14).

Latent variables. The remaining sampling steps are standard, but are
included here for completeness. Sampling the columns of the latent variable
matrix X for each t ∈ [1, . . . , T] we have

P (xt|−) ∝ P (yt|xt,−)P (xt) = N (xt;µt,Λ) (2.15)

where Λ = GTψ−1G + I and µt = Λ−1GTψ−1yt. Note that since Λ does
not depend on t we only need to compute and invert it once per iteration.
Calculating Λ is order O(K2D), and inverting it is O(K3). Calculating µt
is order O(KD) and must be calculated for all N xt’s, a total of O(NKD).
Thus sampling X is order O(K2 +K3 +NKD).

23

Factor covariance. If the mixture coefficient variances are constrained to
be equal, we have λk = λ ∼ Gamma(c, d). The posterior update is then

given by λ|G ∼ Gamma(c+
∑
kmk
2

, d+
∑

d,kG
2
dk).

However, if the variances are allowed to be different for each column of
G, we set λk ∼ Gamma(c, d), and the posterior update is given by λk|G ∼
Gamma(c + mk

2
, d +

∑
dG

2
dk). In this case we may also wish to share power

across factors, in which case we also sample d. Putting a Gamma prior on d
such that d ∼ Gamma(c0, d0), the posterior update is d|λk ∼ Gamma(c0 +
cK, d0 +

∑K
k=1 λk)

Noise variance. The additive Gaussian noise can be constrained to be
isotropic, in which case the inverse variance is given a Gamma prior: ψ−1d =
ψ−1 ∼ Gamma(a, b) which gives the posterior update ψ−1|− ∼ Gamma(a +
ND
2
, b+

∑
d,nE

2
dn)

However, if the noise is only assumed to be independent, then each di-
mension has a separate variance, whose inverse is given a Gamma prior:
ψ−1d ∼ Gamma(a, b) which gives the posterior update ψ−1d |− ∼ Gamma(a +
N
2
, b +

∑
nE

2
dn). If b is given prior distribution Gamma(a0, b0) the Gibbs

update is b|− ∼ Gamma(a0 + aD, b0 +
∑D

d=1 ψ
−1
d).

Algorithm 1 One iteration of the nsFA sampler

for d = 1 to D do
for k = 1 to K do

Sample Zdk using Equation 2.5
end for
Sample κd using Equation 2.7

end for
for n = 1 to N do

Sample X:n using Equation 2.15
end for
Sample α, φ, λg as detailed above.

24

2.3 Results

We compare the following models:

• FA - Bayesian Factor Analysis

• A - Factor Analysis with ARD prior to determine active sources

• S - Sparse Factor Analysis, using the finite IBP

• NS - The proposed model: Nonparametric Sparse Factor Analysis

• W - Bayesian Factor Regression Model of West et al. [2007].

• F - The sparse Factor Analysis method of Fokoue [2004], Fevotte and
Godsill [2006] and Archambeau and Bach [2009]

Note that all of these models can be learned using the software package
we provide simply by using appropriate settings.

2.3.1 Synthetic data

Since generating a connectivity matrix Z from the IBP itself would clearly
bias towards our model, we instead use the D = 100 gene by K = 16 factor
E. Coli connectivity matrix derived in Kao et al. [2004] from RegulonDB and
current literature. We ignore whether the connection is believed to be up or
down regulation, resulting in a binary matrix. We generate random datasets
with N = 100 samples by drawing G and X from a zero mean unit variance
Gaussian, calculating Y = (G� Z)X + E, where E is Gaussian white noise
with variance set to give a signal to noise ratio of 10.

Here we will define the reconstruction error, Er as

Er(G, Ĝ) =
1

DK

K∑
k=1

min
k̂∈{1,..,K̂}

D∑
d=1

(Gdk −Gdk̂)
2

where Ĝ, K̂ are the inferred quantities. Our aim is to minimise over
permutations, but we do this by greedily minimising the alignment of true
and inferred factors. We average this error over the last ten samples of the
MCMC run. Note that this error function does not penalise inferring extra
spurious factors, so we will investigate this possibility separately.

25

Figure 2.3.1 shows the reconstruction error for each method and different
numbers of latent features, across ten random datasets and the last ten sam-
ples out of 1000. Unsurprisingly, plain Factor Analysis (FA) performs the
worst, with increasing overfitting as the number of factors is increased. For
K̂ = 20 (FA20) the variance is also very high, since the four spurious features
fit noise. Using an ARD prior on the features (A) improves the performance,
and overfitting no longer occurs. The reconstruction error is actually less for
K̂ = 20, but this is an artifact due to the reconstruction error not penalising
additional spurious features in the inferred G. Sparse factor analysis (S),
the finite version of the full infinite model, performs very well. The Bayesian
Factor Regression Model (W) performs significantly better than the ARD
factor analysis (A), but not as well as our sparse model (S). It is interesting
that for BFRM the reconstruction error decreases significantly with increas-
ing K̂, suggesting that the default priors may actually encourage too much
sparsity for this dataset. Fokoue’s method (F) only performs marginally bet-
ter than A, suggesting that this “soft” sparsity scheme is not as effective at
finding the underlying sparsity in the data. Overfitting is also seen, with
the error increasing with K̂. This could potentially be resolved by placing
an appropriate per factor ARD-like prior over the scale parameters of the
Gamma distributions controlling the precision of elements of G. Finally, the
non-parametric sparse Factor Analysis proposed here and in Rai and Daumé
III [2008] performs very well. With fixed α = 1 (NSa1) or inferring α we
see very similiar performance. Sharing power between elements of the noise
variance (NSsn) also seems to reduce the variance of the sampler, which is
sensible in this example since the noise was in fact isotropic.

Figure 2.4 shows histograms for the number of latent features inferred for
the nonparametric sparse model. This represents an approximate posterior
over K. For fixed α = 1 the distribution is centered around the true value
of K = 16, with minimal bias (EK = 16.1). The variance is significant
(standard deviation of 1.46), but is reasonable considering the noise level
(SNR=10) and that in some of the random datasets, elements of Z which are 1
could be masked by very small corresponding values of G. This hypothesis is
supported by the results of a similar experiment where G was set equal to Z.
In this case, the sampler always converged to at least 16 features, but would
also sometimes infer spurious featues from noise (results not shown). When
inferring α some bias and skew are noticable. The mean of the posterior is
now at 18.3 with standard deviation 2.0, suggesting there is little to gain
from sampling α for this particular dataset. This could be seen as just “good

26

FA12 FA16 FA20 A12 A16 A20 S12 S16 S20 W12 W16 W20 F14 F16 F20 NSa1 NS NSsn

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

re
c
o

n
s
tr

u
c
ti
o

n
 e

rr
o

r

Figure 2.3: Boxplot of reconstruction errors for simulated data derived from
the E. Coli connectivity matrix of Kao et al. [2004]. Ten datasets were
generated and the reconstruction error calculated for the last ten samples
from each algorithm. Numbers refer to the number of latent factors used, K.
a1 denotes fixing α = 1. sn denotes sharing power between noise dimensions.

27

13 14 15 16 17 18 19 20 21
0

50

100

150

200

250

300

Number of latent factors

fr
e

q

14 15 16 17 18 19 20 21 22 23 24 25 26 27
0

50

100

150

200

250

Number of latent factors

fr
e

q

Figure 2.4: Histograms of the number of latent features inferred by the non-
parametric sparse FA sampler for the last 100 samples out of 1000. Left:
With α = 1. Right: Inferring α.

luck” that α = 1 happened to be a good choice here.

2.3.2 Convergence

nsFA can suffer from slow convergence if the number of new features is drawn
from the prior. Figure 2.5 shows how the different proposals for κd effect
how quickly the sampler reaches a sensible number of features. If we use the
prior as the proposal distribution, mixing is very slow, taking around 5000
iterations to converge, as shown in Figure 2.5(a). If a mass of 0.1 is added
at κd = 1, then the sampler reaches the equilibrium number of features in
around 1500 iterations, as shown in Figure 2.5(b)). However, if we try to add
features even faster, for example by setting the factor λ = 50 in Equation 2.6,
then the sampling noise is greatly increased, as shown in Figure 2.5(c), and
the computational cost also increases significantly because so many spurious
features are proposed only to be rejected.

2.3.3 Biological Data

To assess the performance of each algorithm on the biological data where
no ground truth is available, we calculated the test set log likelihood under
the posterior. Ten percent of entries from Y were removed at random, ten
times, to give ten datasets for inference. We do not use mean square error
as a measure of predictive performance because of the large variation in the

28

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30

40

50

60

iterations

ac
tiv

e
fa

ct
or

s

(a) Prior.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30

40

50

60

70

80

iterations

nu
m

 a
ct

iv
e

fa
ct

or
s

(b) Prior plus 0.1I(κ = 1).

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

80

90

100

nu
m

 a
ct

iv
e

fa
ct

or
s

iterations

(c) Factor λ = 50.

Figure 2.5: The effect of different proposal distributions for the number of
new features.

signal to noise ratio across gene expression level probes.

E. Coli time-series dataset from Kao et al. [2004]

Figure 2.6(a) shows the test log likelihood achieved by the various algorithms
on the E. Coli dataset, including 100 genes at 24 time-points. On this sim-
ple dataset incorporating sparsity doesn’t improve predictive performance.
Overfitting the number of latent factors does damage performance, although
using the ARD or sparse prior alleviates the problem. Based on predictive
performance of the finite models, five is a sensible number of features for this
dataset: the nsFA model infers a median number of 4 features, with some
probability of there being 5, as shown in Figure 2.6(b).

Breast cancer dataset from West et al. [2007]

Figure 2.7(a) shows the test log probability for the breast cancer dataset of
West et al. [2007], including 226 genes across 251 individuals. The samplers
were found to have converged after around 1000 samples according to stan-
dard multiple chain convergence measures, so 3000 MCMC iterations were
used for all models. The predictive log probability was calculated using the
final 100 MCMC samples. The settings used for each algorithm are available
on the author’s website. Factor analysis (FA) shows significant overfitting
as the number of latent features is increased from 20 to 40. Using the ARD
prior prevents this overfitting (A), giving improved performance when us-
ing 20 features and only slightly reduced performance when 40 features are
used. The sparse finite model (S) shows an advantage over A in terms of
predictive performance as long as underfitting does not occur: performance

29

FA5 FA10 A5 A10 S5 S10 N0 Fe−5 Fe−6 W5 W10

−150

−100

−50

0

50

100

150

lo
g

 l
ik

e
lih

o
o

d
 o

f
te

s
t

d
a

ta

(a) Log likelihood of test data under each
model based on the last 100 MCMC samples.
The boxplots show variation across 10 differ-
ent random splits of the data into training
and test sets.

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6

iterations

a
c
ti
v
e
 f
a
c
to

rs

(b) Number of active latent features
during a typical MCMC run of the
nsFA model.

Figure 2.6: Results on E. Coli time-series dataset from Kao et al. [2004]
(N = 24, D = 100, 3000 MCMC iterations).

is comparable when using only 10 features. The performance of the sparse
nonparametric model (N) is comparable to the sparse finite model when an
appropriate number of features is chosen, but avoids the time consuming
model selection process. Fokoue’s method (F) was run with K = 20 and var-
ious settings of the hyperparameter d which controls the overall sparsity of
the solution (Fe-3 corresponds to setting d = 10−3 and so on). The model’s
predictive performance depends strongly on the setting of this parameter,
with results approaching the performance of the sparse models (S and N)
for d = 10−4. The performance of BFRM (W) on this dataset is noticeably
worse than the other sparse models.

As described in Section 2.2, sampling Z and G takes order O(NKD) op-
erations per iteration, and sampling X takes O(K2 +K3 +NKD). However,
for the moderate values encoutered for datasets 1 and 2 the main computa-
tional cost is sampling the non-zero elements of G, which takes O((1−s)DK)
where s is the sparsity of the model. Figure 2.7(c) shows the mean CPU time
per iteration divided by the number of features at that iteration. Naturally,
straight FA is the fastest, taking only around 0.025s per iteration per fea-
ture. The value increases slightly with increasing K, suggesting that here the
O(K2D+K3) calculation and inversion of λ, the precision of the conditional

30

on X, must be contributing. The computational cost of adding the ARD
prior is negligible (A). For the sparse finite model The CPU time per itera-
tion is just over double for the sparse finite model (S), but the cost actually
decreases with increasing K, because the sparsity of the solution increases
to avoid overfitting. There are less non-zero elements of G to sample per
feature, so the CPU time per feature decreases. The CPU time per iteration
per feature for the non-parametric sparse model (N) is somewhat higher than
for the finite model because of the cost of the feature birth and death process.
However, Figure 2.7(b) shows the absolute CPU time per iteration, where we
see that the nonparametric model is only marginally more expensive than the
finite model of appropriate size (S15) and cheaper than choosing an unneces-
sarily large finite model (S20 and S40). Fokoue’s method (F) has comparable
computational performance to the sparse finite model, but interestingly has
increased cost for the optimal setting of d = 10−4. The parameter space for F
is continuous, making search easier but requiring a normal random variable
for every element of G. W pays a considerable computational cost for both
the hierarchial sparsity prior and the DP prior on X.

Prostate cancer dataset from Yu et al. [2004]

Figure 2.8(b) shows the predictive performance of A, F and N on the prostate
cancer dataset of Yu et al. [2004], including 12557 genes across 171 individ-
uals. The large number of genes in this dataset makes inference slower, but
the problem is manageable since the computational complexity is linear in
the number of genes. Despite the large number of genes, the appropriate
number of latent factors, in terms of maximising predictive performance, is
still small, around 10 (nsFA infers a median of 12 factors). This may seem
small relative to the number of genes, but it should be pointed out that the
genes included in the breast cancer and E. Coli datasets are those capturing
the most variability. Running 1000 iterations of nsFA takes under 8 hours.

2.4 Discussion

We have seen that in both the E. Coli and breast cancer datasets that spar-
sity can improve predictive performance, as well as providing a more easily
interpretable solution. Using the IBP to provide sparsity is straightforward,
and allows the number of latent factors to be inferred within a well defined

31

FA10 FA20 FA40 A10 A20 A40 S10 S15 S20 S40 N Fe−3 Fe−4 Fe−5 Fe−6 W5 W10 W20

−3800

−3600

−3400

−3200

−3000

−2800

lo
g
 l
ik

e
lih

o
o
d
 o

f
te

s
t
d
a
ta

(a) Predictive performance: log likelihood of test (the 10%
missing) data under each model based on the last 100 MCMC
samples. Higher values indicate better performance. The box-
plots show variation across 10 different random splits of the
data into training and test sets.

FA10 FA20 FA40 A10 A20 A40 S10 S15 S20 S40 N Fe−3 Fe−4 Fe−5 Fe−6 W5 W10 W20

1

2

3

4

5

c
p
u
 t
im

e
 p

e
r

it
e
ra

ti
o
n

(b) CPU time per iteration, averaged across the 3000 iteration
run.

FA10 FA20 FA40 A10 A20 A40 S10 S15 S20 S40 N Fe−3 Fe−4 Fe−5 Fe−6 W5 W10 W20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

c
p
u

 t
im

e
 p

e
r

it
e
ra

ti
o
n
 p

e
r

fe
a
tu

re

(c) CPU time per iteration divided by the number of features
at that iteration, averaged across all iterations.

Figure 2.7: Results on breast cancer dataset (N = 251, D = 226, 3000
MCMC iterations).

32

S10 S15 S20 S40 N W5 W10 W20

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

s
p
a
rs

it
y

(a) Sparsity, calculated as the number of
zero elements of G divided by the total
number of elements (N ×K).

A10 A20 A40 S10 S20 S40 N

−3.15

−3.1

−3.05

−3

−2.95

−2.9

−2.85

x 10
5

lo
g

 l
ik

e
lih

o
o

d
 o

f
te

s
t

d
a

ta

(b) Results on Prostate cancer dataset
from Yu et al. [2004], including 12557
genes across 171 individuals (1000
MCMC iterations).

Figure 2.8: Further results on biological data.

theoretical framework. This has several advantages over manually choosing
the number of latent factors. Choosing too few latent factors damages predic-
tive performance, as seen for the breast cancer dataset. Although choosing
too many latent factors can be compensated using appropriate ARD-like pri-
ors, we find this is typically more computationally expensive than the birth
and death process of the IBP. The BFRM model’s more complex prior may
have improved interpretability but at a cost of more computationally involved
inference and reduced predictive performance. Manual model selection is an
alternative but is time consuming. Finally we show that running nsFA on
full gene expression datasets with 10000+ genes is feasible so long as the
number of latent factors remains relatively small. An interesting direction
for this research is how to incorporate prior knowledge, for example if certain
transcription factors are known to regulate specific genes. Incorporating this
knowledge could both improve the performance of the model and improve
interpretibility by associating latent variables with specific transcription fac-
tors.

33

Chapter 3

Data Parallelisation in the
Indian Buffet Process

Bioinformatics problems are becoming increasingly large scale. Gene expres-
sion data will typically include tens of thousands of probes, clinical datasets
may have thousands of individuals and thousands of measurements, and SNP
(Single Nucleotide Polymorphism) arrays can have a million probes per sam-
ple. Nonparametric models provide a framework to learn the appropriate
size models to use for these huge datasets, but scaling cutting edge collapsed
sampling algorithms to these sizes is challenging in terms of both CPU time
and memory usage.

Advances in multicore and distributed computing provide one answer to
this challenge: if each processor can consider only a small part of the data,
then inference in these large datasets might become more tractable. How-
ever, such data parallelisation of inference is nontrivial—while simple models
might only require pooling a small number of sufficient statistics [Chu et al.,
2007], correct inference in more complex models can depend on frequent
sychronization or worse yet, having to communicate entire probability distri-
butions between processors. Building on work on approximate asynchronous
multicore inference for topic models [Asuncion et al., 2008], we develop a
message passing framework for data-parallel Bayesian inference applicable to
nonparametric models.

To achieve efficient parallelisation, we exploit the idea, recently intro-
duced by Doshi-Velez and Ghahramani [2009], and described in Section 1.8.6,
of maintaining a distribution over parameters while sampling. This idea,
coupled with a message passing scheme over processors, makes it possible

34

to distribute inference over many processors while sacrificing little accuracy
in inference. We demostrate our approach by scaling IBP inference to a
problem with 57,000 observations, the largest application to date. As most
elements of our procedure are general to data parallelisation in other models,
our work opens up the use of the IBP and similar models in data-intensive
fields, enabling these modeling technologies to be harnessed in a broad range
of applications.

3.1 Latent Feature Model

We associate with Z, the feature assignment matrix, a feature matrix A with
rows that parameterise the effect that possessing each feature has on the data.
Given these matrices, we write the probability of the data as P (X|Z,A). Our
work requires that P (A|X,Z) can be computed or approximated efficiently
by an exponential family distribution. Specifically, we apply our techniques
to both a fully-conjugate linear-Gaussian model and non-conjugate Bernoulli
model.

Linear Gaussian Model. This models an N ×D real-valued data matrix
X as a product:

X = ZA+ ε, (3.1)

where Z is the binary feature-assignment matrix and A is a K by D real-
valued matrix with an independent Gaussian prior N(0, σ2

a) on each element.
Each element of the N by D noise matrix ε is independent with a N(0, σ2

n)
distribution. Given Z and X, the posterior on the features A is Gaussian,
given by mean and covariance

µA = (ZTZ +
σ2
x

σ2
a

I)−1ZTX (3.2)

ΣA = σ2
x(Z

TZ +
σ2
x

σ2
a

I)−1 (3.3)

Bernoulli Model. This models an N × D binary-valued data matrix X
using a leaky noisy-or likehood for each element:

P (Xnd = 1|Z,A) = 1− ε λ
∑
k ZnkAkd . (3.4)

35

Each element of the A matrix is binary with independent Bernoulli(pA) priors.
The parameters ε and λ determine how “leaky” and how “noisy” the or-
function is, respectively. Typical hyperparameter values are ε = 0.95 and λ =
0.2. The posterior P (A|X,Z) cannot be computed in closed form; however,
a mean-field variational posterior in which we approximate P (A|X,Z) with
as product of independent Bernoulli variables

∏K,D
k,d qkd(akd) can be readily

derived.

3.2 Parallel Inference

We partition the data set between processors, using Xp and Zp to denote
the portions of the data X and IBP matrix Z assigned to processor p. We
also experimented with instead dividing the matrix Z by features, assigning
some subset of features to each processor. This approach performed very
poorly because each processor is trying to adjust its features to fit the same
residual X − ZA. When the features are combined, this residual will have
been fitting multiple times, so the error will always increase. Therefore we
describe only our results for parallelising by samples.

For the fully uncollapsed model (which mixes very poorly), data paral-
lelisation is straightforward. The matrix A and stick lengths π of the IBP
must be sampled at the parent node, and sent to each processor. Each pro-
cessor then samples P (Zp|Xp, A, π), and sends the updated Zp to the parent.
No approximation is introduced, but the bandwidth required is high and this
sampler is known to have poor mixing properties because A and Z are highly
correlated in the posterior.

We develop a procedure for approximate, parallel inference in the IBP
which combines Markov chain Monte Carlo (MCMC) with message passing
to approximate the accelerated sampler of [Doshi-Velez and Ghahramani,
2009].

Our algorithm leverages the fact that the observations X are indepen-
dent given a distribution over the parameters A and the counts from the
IBP matrix Z. In Doshi-Velez and Ghahramani [2009], the distribution
P (A|X−n, Z−n) was used to derive an accelerated sampler for sampling Zn,
where n indexes a data point and −n is the set excluding that point. Sim-
ilarly, for parallel inference each processor p will maintain a distribution
P p(A|X−n, Z−n), where P p is an approximation to the distribution P (A|X−n, Z−n).
The distributions P p can be updated efficiently via message passing between

36

X Z A

...

*

D D

~ NN ... + ε
K

K

(a) Representation of the linear-Gaussian
model. The data X is generated from the
product of the feature assignment matrix
Z and feature matrix A. In the Bernoulli
model, the product ZA adjusts the proba-
bility of X = 1

Root
prior

sta
tis

tic
s

po
ste

rio
r

P1 P2

sta
tis

tic
s

statisticsposterior

po
ste

rio
r posterior

statistics

P3 P4

(b) Message passing process.
The processors send sufficient
statistics of the likelihood up to
the root, which calculates and
sends the full (exact) posterior
down to the processors.

Figure 3.1: Diagrammatic representation of the model structure and the
message passing process.

the processors.
The inference alternates between three steps:

• Message passing: processors communicate to compute the exact P (A|X,Z).

• Gibbs sampling: processors sample a new set of Zp’s in parallel.

• Hyperparameter sampling: a designated root processor resamples hy-
perparameters, which are propagated to other processors

Because all of the processors are sampling Z at once, the posteriors P p(A|X,Z)
used by each processor are no longer exact. However, we show empirically in
that this approximation has little effect on the inference.

Message Passing The full posterior on the featuresA is given by P (A|Z,X).
Bayes Rule gives us the following factorisation:

P (A|Z,X) ∝ P (A)
∏
p

P (Xp|Zp, A) (3.5)

If the prior P (A) and the likelihoods P (Xp|Zp, A) are part of conjugate
exponential family models, then the product in equation (3.5) is equivalent to
summing the sufficient statistics of the likelihoods from all of the processors.
In the linear-Gaussian model, these statistics correspond to mean vectors and

37

covariance matrices (handled more readily in information mean and precision
form); in the Bernoulli model, the statistics correspond to counts on how
often each element Akd is equal to one. The linear-Gaussian messages have
size O(K2 + KD), and the Bernoulli messages O(KD). For nonparametric
models such as the IBP, the number of features K grows as O(logN). This
slow growth means that messages remain compact and we can efficiently scale
to large datasets.

The most straightforward way to accurately compute the full posterior is
to network the processors in a tree architecture. The sufficient statistics for
the feature posterior are summed via message passing along the tree (which
is an instance of belief propagation and is exact). Specifically, the message s
from processor p to processor q is given by

sp→q = lp +
∑

r∈N(p)\q

sr→p

where N(p)\q are the processors attached to p besides q and lp are the suffi-
cient statistics from processor p. A dummy neighbour containing the statis-
tics of the prior is connected to one of the processors. We call this processor
the root. Also summed are the counts mp

k =
∑

n∈Xp Z
p
nk, the popularity of

feature k within processor p. Figure 3.1(b) shows a cartoon of the message
passing process.

Gibbs Sampling In general, Znk can be Gibbs-sampled using Bayes rule

P (Znk|Z−nk, X) ∝ P (Znk|Z−nk)P (X|Z).

The probability P (Znk|Z−nk) depends on the total number of observations
and the number of observations mk for which feature k is active. The message
passing provides each processor with an accurate value for mk, from which
it may compute m−pk = mk −mp

k using its current count mp
k. Each processor

can update its own mp
k as it samples its Zp; it assumes m−pk stays fixed, which

is a good approximation for popular features.
For conjugate models, we evaluate the likelihood P (X|Z) via the integral

P (X|Z) ∝
∫
A

P (Xn|Zn, A)P (A|Z−n, X−n)dA,

where the partial posterior P (A|Z−n, X−n) is given by

P (A|Z−n, X−n) ∝ P (A|Z,X)

P (Xn|Zn, A)
. (3.6)

38

Because the model is conjugate, the partial posterior in (3.6) can be efficiently
computed by subtracting observation n’s contribution to the sufficient statis-
tics.

For non-conjugate models, we can use a variational distribution Q(A)
to approximate P (A|X,Z) during message passing. Usually Q(A) is a pro-
jection of P onto an exponential family, so computing the partial posterior
Q−p(A) is identical to the conjugate case. This can be used for MCMC by
initialise a Gibbs sampler with a draw of A from the partial posterior Q−p(A).
Samples of A from the uncollapsed sampler are used to compute the sufficient
statistics for the likelihood P (X|Z).

Hyperparameter Resampling The IBP concentration parameter α and
hyperparameters of the likelihood can also be sampled during inference. Re-
sampling α depends only on the total number of active features; thus it can
easily be resampled at the root and propagated to the other processors. In
the linear-Gaussian model, the posteriors on the noise and feature variances
(starting from gamma priors) depend on various squared-errors, which can
also be computed in a distributed fashion.

For more general, non-conjugate models, resampling the hyperparameters
requires two steps. In the first step, a hyperparameter value is proposed by
the root and propagated to the processors. The processors each compute the
likelihood of the current and proposed hyperparameter values and propagate
this value back to root. The root evaluates a Metropolis step for the hy-
perparameters and propagates the decision back to the leaves. The two-step
approach does not introduce any latency in the resampling so long as the
synchronous mode of operation is used.

Asynchronous Operation So far we have discussed message passing,
Gibbs sampling, and hyperparameter resampling occuring in separate phases.
In practice, these phases may be performed asynchronously: between its
Gibbs sweeps, each processor updates its feature posterior based on the most
current messages it has received and sends likelihood messages to its parent.
Likewise, the root continuously resamples hyperparameters and propagates
the values down through the tree. This allows faster processors to share in-
formation and perform more inference on their data instead of waiting for
slower processors.

When performing parallel inference in the IBP, a few factors need to be

39

considered with care. Other parallel inference for nonparametric models,
such as the HDP [Asuncion et al., 2008], simply matched features by their
index, that is, assumed that the ith feature on processor p was also the ith

feature on processor q. In the IBP, we find that this indiscriminate feature
merging is often disastrous when adding or deleting features; care must taken
to ensure that the features stay aligned.

We experimented with various solutions to this problem. One restriction
which helps considerably is to only allow unused features to be deleted at the
start of an outer iteration, straight after message passing, so that we know
these features will be deleted globally. Otherwise the features on different
processors become misaligned. We also tried only allowing one processor at
a time to add features. This could even be implemented in the asynchronous
case using a single “I’m allowed to add features” token passed around by
the processors. However, we found that this generally made adding new fea-
tures too slow, and since new features are generally quite uncertain anyway,
concatenating them across processors was not a problem.

Feature Sub-sampling to Scale to Larger Datasets Both likelihood
models discussed above require the product ZA to be computed to evaluate
each Gibbs update. Normally, this computation requires O(KD) elemen-
tary multiplication and addition operations. The overall complexity can be
reduced because of the local nature of the Gibbs updates, but it still re-
mains O(K) or O(D), depending on whether the updates are for A or Z,
respectively.

If the IBP prior is a reasonable model of the data, we expect the number
of features K in a dataset to be O(log(N)). As N grows large, therefore,
computations that depend onK are also potentially slow. For larger datasets,
we sample only a subset of theK features in each iteration. The features to be
sampled is chosen randomly at the start of each Gibbs iteration. As such, over
an infinite run of the sampler, each feature will be sampled infinitely often
and no additional approximation is introduced. Note that if the features to
sample are chosen somehow based on the current state, the Metropolis factor
would be altered and Gibbs sampling would no longer be valid.

40

−1 0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

T
es

t l
og

lik
el

ih
oo

d

Time (s)

Test Loglikelihood for inner = 5 and outer = 1000 iterations

20 40 60 80100

0

0.5

1

Processors = 1

H
ai

rin
es

s
In

de
x

20 40 60 80 100

0

0.5

1

Processors = 7

H
ai

rin
es

s
In

de
x

20 40 60 80100

0

0.5

1

Processors = 31

H
ai

rin
es

s
In

de
x

20 40 60 80100

0

0.5

1

Processors = 127

H
ai

rin
es

s
In

de
x

Proc = 1

Proc = 7

Proc = 31

Proc = 127

Figure 3.2: Change in likelihood for various numbers of processors over the
simulation time. The corresponding hairiness index plots are shown on the
left.

3.3 Analysis of Mixing Properties

We ran a series experiments on 10,000 block images of [Griffiths and Ghahra-
mani, 2005] to study the effects of various sampler configurations on running
time and performance, as well as the mixing properties of the sampler. We
set 5000 data points as test data and the remainder as training data. Figure
3.2 shows the loglikelihood on the test data using 1, 7, 31 and 127 parallel
processors simulated in software, using 1000 parallel (outer) iterations and
5 Gibbs (inner) iterations. The parallel samplers are able to reach the same
test likelihood levels as the serial algorithm, but with significant savings in
running time. It is interesting to note the characteristic shape of the test like-
lihood, which is similar across all testing regimes. This shape is indicative
of the manner in which the features are learnt. Initially, a large number of
features are added, which provides improvements in the test likelihood. This
is then followed by a refinement phase, where excess features are pruned,
providing further improvements.

To gain insight into the tradeoff in choosing between the number of Gibbs
(inner) iterations and parallel (outer) iterations, we show the effective num-
ber of samples for various numbers of inner iterations, after the chain has
been thinned and burnt-in, in Figure 3.3(a). The number of effective samples

41

0 10 20 30 40 50
0.4

0.5

0.6

0.7

0.8

0.9

1

E

ff
ec

ti
ve

 S
am

p
le

s
p

er
 O

u
te

r
It

er
.

#Inner Iterations

Proc = 1

Proc = 7

Proc = 31

Proc = 127

1 7 31 127
1

2

3

4

5

Processors

T
o

ta
l T

im
e

(s
)

i = 50, o = 100

i = 20, o = 250

i = 10, o = 500

i = 5, o = 1000

i = 1, o = 5000

Figure 3.3: Effects of changing the number of inner iterations on: (a) The
effective sample size (b) Total running time (Gibbs and Message passing).

is an MCMC monitoring technique which indicates the loss in efficiency of
the Markov chain. We defer to [Robert and Casella, 2004] for further details.
With increasing number of inner iterations we find the effective sample size
rapidly decreases, implying poor mixing of the Markov chain. For example,
with P = 31 processors and 20 inner iterations the effective sample size has
dropped to 0.75 per outer iteration. So per inner iteration the algorithm is
20/0.75 ≈ 27 times less efficient than the serial sampler.

Figure 3.3(b) shows the total running time for various combinations of inner
and outer iterations. Each combination of inner and outer iterations is set
so that the total number of iterations is 5000. The Gibbs time per outer
iteration, is the maximum time taken to complete the Gibbs (inner) itera-
tions by the set of processors. The total time is the sum of these Gibbs times
and the message passing time. Using the maximum is important since time
spent waiting for the slowest processor to complete is the limitation of the
synchronous scheme.

As the number of processors becomes large, the cost of message pass-
ing becomes a limiting factor. This is an artifact of simulating the parallel
system, which overestimates the message passing time. In the true parallel
system, the cost of message passing is negligible, as discussed in Section 3.4.
While time is saved using a larger number of inner iterations, this is at the
expense of the sampling efficiency. Using a small number of inner iterations
is thus preferred, and we use 3 inner iterations in our experiments.

42

Table 3.1: Dataset descriptions

Dataset N D Description

AR Faces [Mart’inez and Kak, 2001] 2600 1598 faces with lighting, ac-
cessories (real-valued)

Piano [Poliner and Ellis, 2007] 57931 161 STDFT of a piano
recording (real-valued)

Flickr [Kollar and Roy, 2009] 646724 1000 indicators of image
tags (binary-valued)

Table 3.2: Loglikelihoods on test data for real-world datasets for the serial,
synchronous and asynchronous inference types..

Dataset Serial
p = 1

Sync
p = 16

Async
p = 16

AR Faces -4.74 -4.77 -4.84

Piano – -1.182 -1.228

Flickr — -0.0584

3.4 Realworld Experiments

We tested our parallel scheme on three real world datasets on a 16 node
cluster using Matlab Distributed Computing Engine. Implementing this was
one of my main contributions to the project. The first dataset was a set of
2600 frontal face images with 1598 dimensions [Mart’inez and Kak, 2001].
While not extremely large, the high-dimensionality of the dataset makes
it challenging for other inference approaches. The piano dataset [Poliner
and Ellis, 2007] consisted of 57931 samples from a 161-dimensional short-
time discrete Fourier transform of a piano piece. Finally, the binary-valued
Flickr dataset [Kollar and Roy, 2009] indicated whether each of 1000 popular
keywords occurred in the tags of 100,000 images from Flickr. Table 3.1
summarises the data.

Figure 3.4 shows a timing analysis of the faces and music datasets. The
Gibbs time per iteration is improved almost linearly as we increase the num-
ber of processors, giving for example, a speedup of 14 times in the case of

43

music for p = 16. The message passing time is negligible and is 7% of the
Gibbs time for the faces data and 0.1% of the Gibbs time for the music data
for p = 16 parallel processors. However, waiting for synchronisation becomes
significant which motivates motivates the asynchronous inference.

Table 3.2 shows the performance of the parallel inference procedures,
and shows that the performance is comparable across the various methods.
Figure 3.4(c) compares the times for running inference serially, synchronously
and asynchronously with P = 16. We find that the asynchronous inference
is 1.64 times faster than the synchronous case, reducing the computational
time from 11.8s per iteration to 7.2s.

3.5 Discussion

We demonstrated an effective algorithm for data parallel inference in the IBP.
The attraction of our algorithm is that it is able to approximate the cutting
edge accelerated sampler of Doshi-Velez and Ghahramani [2009], which is
non-trivial. Since the messages required for the linear Gaussian model are
quite compact, being 0(K2+KD), the belief propagation phase is not compu-
tationally expensive and probably should be performed every iteration given
the rapid decrease in effective sample size when increased inner iterations
are used. As well as providing a significant speed increase, splitting the data
over multiple compute nodes also greatly reduces the memory requirements
for a large dataset, which could become a limiting factor otherwise.

One limitation of our experimental setup was that the 16 nodes used were
actually two computers with eight cores each. The large waiting times for
synchronous we saw could be an artifact of this: if some shared resources
such as the L1 or L2 cache were “hogged” by one processors others would
run more slowly. The greedy processor would then have to wait for the others
to catch up. On any cluster similar effects could occur however, for example
as load varies with other jobs being submitted or completed.

There are issues with the asynchronous sampler. Firstly, its implemen-
tation using the Matlab Distributed Computing Engine (MDCE) is far from
straightforward. The MDCE has no mechanism for “queuing” messages, so
a processor cannot send a message without it being received. Thus each pro-
cessor must constantly check during its sampling computation whether any
neighbours are trying to send messages to it. Secondly, the rate at which
information is propagated through the tree of processors is reduced. In the

44

synchronous case, information every processor reaches every other proces-
sor every time the message passing is performed. In the asynchronous case,
every time a processor completes its inner sampling loop it only propagates
information along one edge. Thus in a tree of depth T it will take 2T outer it-
erations for information to be exchanged between the further leaves. Thirdly,
the restriction of only deleting globally unused features is no longer possible
because the processors do not know the global counts for the Z matrix. Thus
the features may become misaligned on different processors. This manifests
itself in the “jerky” progress of the log joint for the asynchronous algorithm
seen in Figure 3.4(c).

There are ways these problems could be addressed. To allow synchronous
message passing with asynchronous sampling all processors could be given
a time window in which to sample, for example, one second. Some proces-
sors might complete more inner iterations in this time, improving mixing,
but would not have to wait long for slower processors. Global synchronous
message passing would propagate information throughout the processor tree
more efficiently and allow only globally unused features to be deleted.

Unfortunately it is not straightforward to extend the accelerated sampler,
and therefore our parallel inference scheme, to the non-parametric sparse
Factor Analysis model. Although the parameter posterior is Gaussian given
the mixing matrix G, sampling elements of Z is more complicated because of
the need to integrate out the corresponding real-valued element of G. Doing
that approximately would be interesting future work.

45

1 2 4 8 16
0

20

40

60

80

100

120

number of processors

m
ea

n
tim

e
pe

r
ou

te
r

ite
ra

tio
n/

s

sampling
waiting

(a) Timing analysis for faces dataset

1 2 4 8 16
0

200

400

600

800

1000

1200

number of processors
m

ea
n

tim
e

pe
r

ite
ra

tio
n/

s

sampling
waiting

(b) Timing analysis for music dataset

10
−2

10
0

10
2

10
4

−2.8

−2.6

−2.4

−2.2

−2

−1.8
x 10

7

time/s

lo
g

jo
in

t

serial P=1
synchronous P=16
asynchronous P=16

(c) Timing comparison for different approaches

Figure 3.4: Bar charts comparing sampling time and waiting times for syn-
chronous parallel inference.

46

Chapter 4

Plan for the future

One of the attractions of Machine Learning is its position on the interface
between theory and application. I hope that my PhD will continue to incor-
porate both aspects, and to emphasise this I have broken down my proposed
future work into theory and application projects.

4.1 Theory: Non-conjugate VMP

As part of an internship at Microsoft Research with Tom Minka I have been
working on extending Variational Message Passing (VMP) [Winn et al., 2005]
to non-conjugate-exponential family factors, within the Infer.NET software
framework. Our method involves calculating an exponential family distri-
bution approximation to the factor which ensures that the gradient of the
Kullback-Leibler divergence with respect to the variational parameters is the
same as for the true factor. This allows VMP to be applied in a much
wider class of models than was previously possible. I would be interested
in continuing this work, for example to fitting variational approximations to
non-parametric priors such as the Pitman-Yor process.

4.2 Theory: Hierarchical scale mixtures of

Dirichlets

Using the non-conjugate VMP method described in Section 4.1 I have been
able to implement a factor representing a Dirichlet prior. In the variational

47

approximation the mean of the distribution is represented by another Dirich-
let distribution, and the precision (the “total count”) parameter by a Gamma
distribution. Since the mean is Dirichlet distributed, a hierarchical prior can
be constructed. This would allow power to be shared across clusters or sam-
ples.

4.3 Theory: Nonparametric message passing

Projection VMP allows us to find the closest exponential family distribution
in terms of KL divergence to a particular factor. Stick breaking priors such
as the Dirichlet Process and Pitman Yor process that form the basis of many
non-parametric models, can equally be incorporated into this framework.
The method would find the closest truncated Dirichlet in KL-divergence to
the true infinite dimensional posterior. Incorporating these features into
Infer.NET has the advantage of allowing them to be easily combined with
different model components. For example, once a Dirichlet Process factor is
implemented, this would allow DP mixture models, Hierachical DP models,
and Indian Buffet Process models to be defined and infered.

4.4 Application: A probabilistic model of skin

conditions

Bayesian modeling offers the ability to model rich, structured data, coping
with missing data, taking into account prior domain knowledge and uncer-
tainty in measurements. I have started a collaboration with the Twin’s Re-
search Department at King’s College London. For 15 years they have been
collecting a vast resource of clinical data on around 10,000 female twins [Spec-
tor, December 2006]. The 6000 recorded phenotypes available cover a whole
range of conditions, but since my collaborator is a clinical skin doctor, we
are planning to focus on this area.

For a subset of 800 individuals, gene expression measurements have been
made for three different tissue types - skin, muscle and white blood cells,
and these individuals have also been genotyped on high density chips. My
focus is currently on phenotypic modeling, where I aim to model various skin
conditions incorporating medical prior knowledge. In such a large, complex
dataset, effective visualisation and data exploration is invaluable, which I am

48

Figure 4.1: Initial model of skin and aging.

starting to achieve extending John Winn’s “Vizual” program, which loads
data, calculates mutual information between variables, and shows these con-
nections as a graph. A particular challenge of this dataset is the longitudinal
nature: different individuals have visited the department varying numbers of
times and at varying intervals. At each visit, although some clinical pheno-
types are always measured, others are not, or slightly different measurements
of the same underlying condition are made. Thus one can imagine a modeling
hierarchy: at the bottom disparate but related measurements are combined
into more robust latent factors which are highly informative of a “true” at-
tribute of an individual, e.g. how much they sunbathe, whether they have
an elevated mole count. At the top level, these variables are combined using
medical understanding to test hypotheses, cluster conditions and find the
key variation in the data. Figure 4.1 shows an initial outline of the ageing
processes in skin which we aim to model.

49

Figure 4.2: Plan for remainder of the period of study

4.5 Application: Correlating genotype, gene

expression and phenotype

The UK twins database is one of the first times phenotypic, gene expression
and genetic data has been available on the such a large, coherent cohort.
In collaboration with Leopold Parts at the Wellcome Trust Sanger Centre I
intend to work on finding correlated signals across these different data types.
We aim to develop expressive models of the individual domains: rich phe-
notype models incorporating medical understanding, sparse Factor Analysis
models of underlying processes in gene expression, and Hidden Markov Mod-
els [Huang et al., 2007] or full ancestral recombination graphs [Minichiello
and Durbin, 2006] of genotype variance. We hope that that our power to de-
tect true correlation between these domains will be increased by using these
domain specific models. In fact, previous work has shown that removing un-
observed environmental and experimental factors from gene expression data
before correlating to genotype significantly increases power to detect eQTLs
[Stegle et al., 2008].

4.6 Tutorial paper: Message passing algorithms

I plan to work on a tutorial paper with Jurgen van Gael and Philipp Hennig
on message passing algorithms. Both Variational Message Passing [Winn
et al., 2005] and Expectation Propagation [Minka, 2001] are well developed
deterministic algorithms for Bayesian inference. In Minka [2005] alpha-

50

divergences were used to put both VMP and EP into a common framework.
Various developments have extended the functionality of these algorithms:
gates for representing arbitrary mixture models [Minka and Winn, 2008], and
power plates for calculating partition functions [Qi et al., 2005]. This litera-
ture is quite daunting to the non-expert, being highly technical in nature and
generally not geared for a practioner’s needs. The various concepts are also
explained best in disparate papers. These factors motivate a tutorial paper
explaining VMP and EP, drawing the link between the two, and explaining
the basic concepts required to use these methods in an applied setting.

4.7 Journal Paper on Accelerated Sampling

We plan to write a journal paper with Finale and Shakir combining the
accelerated sampler and parallel sampling work, applying both to the nsFA
model.

51

Bibliography

C. Archambeau and F. Bach. Sparse probabilistic projections. In Daphne
Koller, Dale Schuurmans, Yoshua Bengio, and Léon Bottou, editors, Pro-
ceedings of the Conference on Neural Information Processing Systems
(NIPS), pages 73–80, Vancouver, Canada, 2009. MIT Press.

Arthur Asuncion, Padhraic Smyth, and Max Welling. Asynchronous dis-
tributed learning of topic models. In Advances in Neural Information
Processing Systems 21, 2008.

Christopher M. Bishop. Bayesian PCA. In Proceedings of the Conference
on Neural Information Processing Systems (NIPS), pages 382–388, Cam-
bridge, MA, USA, 1999. MIT Press. ISBN 0-262-11245-0.

Carlos M. Carvalho, Nicholas G. Polson, and James G. Scott. Handling
sparsity via the horseshoe. Journal of Machine Learning Research, 136:
2144–2162, 2009.

Ali Taylan Cemgil, Cedric Fevotte, and Simon J. Godsill. Blind separation
of sparse sources using variational EM. In Proc. 13th European Signal
Processing Conference (EUSIPCO05), 2005.

C.T. Chu, S.K. Kim, Y.A. Lin, Y.Y. Yu, G. Bradski, A.Y. Ng, and K. Oluko-
tun. Map-reduce for machine learning on multicore. In Advances in Neural
Information Processing Systems, page 281. MIT Press, 2007.

F. Doshi-Velez and Z. Ghahramani. Accelerated inference for the Indian
buffet process. In Proceedings of the International Conference on Machine
Learning, 2009.

52

F. Doshi-Velez, K. T. Miller, J. Van Gael, and Y. W. Teh. Variational
inference for the Indian buffet process. In Proceedings of the Intl. Conf. on
Artificial Intelligence and Statistics, volume 12, pages 137–144, 2009.

Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least
angle regression. Annals of Statistics, 32:407–499, 2004.

C. Fevotte and S.J. Godsill. A Bayesian approach for blind separa-
tion of sparse sources. Audio, Speech, and Language Processing, IEEE
Transactions on, 14(6):2174–2188, Nov. 2006. ISSN 1558-7916. doi:
10.1109/TSA.2005.858523.

Ernest Fokoue. Stochastic determination of the intrinsic structure in bayesian
factor analysis. Technical report, Statistical and Applied Mathematical
Sciences Institute, 2004.

John Geweke. Bayesian treatment of the independent student-t linear model.
Journal of Applied Econometrics, 8:19–40, 1993.

Z. Ghahramani, T.L. Griffiths, and P. Sollich. Bayesian nonparametric latent
feature models. In Bayesian Statistics 8. Oxford University Press, 2007.

Zoubin Ghahramani and Matthew J. Beal. Propagation algorithms for varia-
tional Bayesian learning. In In Advances in Neural Information Processing
Systems 13, pages 507–513. MIT Press, 2001.

T. Griffiths and Z. Ghahramani. Infinite latent feature mod-
els and the indian buffet process. Technical Report 1,
Gatsby Computational Neuroscience Unit, 2005. URL
citeseer.ist.psu.edu/article/griffiths05infinite.html.

H Hotelling. Analysis of a complex of statistical variables into principal
components. Journal of educational psychology, 24:417–441, 1933.

Jim C. Huang, Anitha Kannan, and John Winn. Bayesian association of
haplotypes and non-genetic factors to regulatory and phenotypic varia-
tion in human populations. Bioinformatics, 23(13):i212–221, 2007. doi:
10.1093/bioinformatics/btm217.

Ishwaran and J. Sunil Rao. Js: Spike and slab variable selection: frequentist
and bayesian strategies. Annals of Statistics, 2003.

53

Hemant Ishwaran and J. Sunil Rao. Spike and slab gene selection for multi-
group microarray data. J. Amer. Statist. Assoc, 100:764–780, 2005.

W James and C Stein. Estimation with quadratic loss. In Proceedings of the
Fourth Berkeley Symposium on Mathematical Statisitics and Probability,
volume 1, pages 361–379. University of California Press, 1961.

Katy C Kao, Young-Lyeol Yang, Riccardo Boscolo, Chiara Sabatti,
Vwani Roychowdhury, and James C Liao. Transcriptome-based de-
termination of multiple transcription regulator activities in escherichia
coli by using network component analysis. Proc Natl Acad Sci U S
A, 101(2):641–646, Jan 2004. doi: 10.1073/pnas.0305287101. URL
http://dx.doi.org/10.1073/pnas.0305287101.

David Knowles and Zoubin Ghahramani. Infinite sparse factor analysis and
infinite independent components analysis. In 7th International Conference
on Independent Component Analysis and Signal Separation, pages 381–
388, 2007.

Thomas Kollar and Nick Roy. Utilizing object-object and object-scene con-
text when planning to find things. In International Conference on Robotics
and Automation, 2009.

D J C Mackay. Bayesian nonlinear modeling for the prediction competition.
ASHRAE Transactions, 100:1053–1062, 1994.

Aleix M. Mart’inez and Avinash C. Kak. PCA versus LDA. IEEE Trans.
Pattern Anal. Mach. Intelligence, 23:228–233, 2001.

Edward Meeds, Zoubin Ghahramani, Radford Neal, and Sam Roweis.
Modeling dyadic data with binary latent factors. In Neu-
ral Information Processing Systems, volume 19, 2006. URL
http://www.cs.toronto.edu/ roweis/publications.html.

Mark J. Minichiello and Richard Durbin. Mapping trait loci by use of inferred
ancestral recombination graphs. The American Journal of Human Genet-
ics, 79(5):910 – 922, 2006. ISSN 0002-9297. doi: DOI: 10.1086/508901.

Thomas P. Minka. Automatic choice of dimensionality for PCA. Technical
report, MIT Media Lab, 2000.

54

Thomas P. Minka. Expectation propagation for approximate Bayesian in-
ference. In UAI ’01: Proceedings of the 17th Conference in Uncertainty
in Artificial Intelligence, pages 362–369, San Francisco, CA, USA, 2001.
Morgan Kaufmann Publishers Inc. ISBN 1-55860-800-1.

Tom Minka. Divergence measures and message passing. Technical Report
MSR-TR-2005-173, Microsoft Research, 2005.

Tom Minka and John Winn. Gates: A graphical notation for mixture models.
Technical Report MSR-TR-2008-185, Microsoft Research, 2008.

Karl Pearson. On lines and planes of closest fit to systems of points in space.
Philosophical Magazine Series 6, 2:559–572, 1901.

Graham E. Poliner and Daniel P. W. Ellis. A discriminative model for poly-
phonic piano transcription. EURASIP J. Appl. Signal Process., 2007(1):
154–154, 2007.

Yuan Alan Qi, Martin Szummer, and Thomas P. Minka. Bayesian conditional
random fields. In Ninth International Conference on Artificial Intelligence
and Statistics (AISTATS-2005), 2005.

Piyush Rai and Hal Daumé III. The infinite hierarchical factor regression
model. In Neural Information Processing Systems, Vancouver, Canada,
2008. URL http://pub.hal3.name/daume08ihfrm.

C. R. Robert and G. Casella. Monte Carlo Statistical Methods. Springer,
second edition, 2004.

Sam Roweis. Em algorithms for pca and spca. In in Advances in Neural
Information Processing Systems, pages 626–632. MIT Press, 1998.

Tim D. Spector. The uk adult twin registry (TwinsUK). Twin Research and
Human Genetics, 9:899–906(8), December 2006.

Oliver Stegle, Anitha Kannan, Richard Durbin, and John Winn. Accounting
for non-genetic factors improves the power of eqtl studies. Research in
Computational Molecular Biology, pages 411–422, 2008.

Y. W. Teh, D. Görür, and Z. Ghahramani. Stick-breaking construction for
the Indian buffet process. In Proceedings of the Intl. Conf. on Artificial
Intelligence and Statistics, volume 11, pages 556–563, 2007.

55

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society, Series B, 58:267–288, 1994.

Michael E. Tipping and Christopher M. Bishop. Probabilistic principal
component analysis. Journal of the Royal Statistical Society. Series B
(Statistical Methodology), 61(3):611–622, 1999. ISSN 13697412. URL
http://www.jstor.org/stable/2680726.

M Wainwright and M I Jordan. Graphical models, exponential families
and variational inference. Technical report, Department of Statistics, UC
Berkeley, 2003.

Mike West, Jeffrey Chang, Joe Lucas, Joseph R Nevins, Quanli Wang, and
Carlos Carvalho. High-dimensional sparse factor modelling: Applications
in gene expression genomics. Technical report, ISDS, Duke University,
2007. URL http://ftp.stat.duke.edu/WorkingPapers/05-15.html.

John Winn, Christopher M. Bishop, and Tommi Jaakkola. Variational mes-
sage passing. Journal of Machine Learning Research, 6:661–694, 2005.

Frank Wood and Thomas L. Griffiths. Particle filtering for nonparametric
Bayesian matrix factorization. In Advances in Neural Information Pro-
cessing Systems, volume 19, pages 1513–1520, 2007.

Gale Young. Maximum likelihood estimation and factor anal-
ysis. Psychometrika, 6(1):49–53, February 1941. URL
http://ideas.repec.org/a/spr/psycho/v6y1941i1p49-53.html.

Yan Ping Yu, Douglas Landsittel, Ling Jing, Joel Nelson, Baoguo Ren,
Lijun Liu, Courtney McDonald, Ryan Thomas, Rajiv Dhir, Sydney
Finkelstein, George Michalopoulos, Michael Becich, and Jian-Hua Luo.
Gene expression alterations in prostate cancer predicting tumor ag-
gression and preceding development of malignancy. J Clin Oncol,
22(14):2790–2799, Jul 2004. doi: 10.1200/JCO.2004.05.158. URL
http://dx.doi.org/10.1200/JCO.2004.05.158.

56

