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Technical Abstract

An extension of Independent Components Analysis (ICA) is proposed

where observed data yt is modelled as a mixture, G, of a potentially infinite

number of hidden sources, xt. Whether a given source is active for a specific

data point is specified by an infinite binary matrix, Z, so

Y = G(Z�X) + E (1)

where � denotes element-wise multiplication, X and Y are concatenated

matrices of xt and yt respectively, and E is Gaussian noise. We define four

model variants which share the following priors:

εt ∼ N
(
0, σ2

ε I
)

σ2
ε ∼ IG (a, b) (2)

gk ∼ N
(
0, σ2

G

)
σ2

G ∼ IG (c, d) (3)

Z ∼ IBP(α, β) α ∼ G (e, f) (4)

where G (·) denotes the Gamma distribution, IG (·) the inverse Gamma dis-

tribution, and IBP(·) the Indian Buffet Process (IBP). The variants differ

in what source distribution and which version of the IBP is used:

xkt ∼ N (0, 1) xkt ∼ L(1)

β = 1 isFA1 iICA1

β ∼ G (1, 2) isFA2 iICA2

where L(·) is the Laplacian (bi-exponential) distribution. The IBP is a distri-

bution over an infinite binary matrix Z found by taking the limit as K →∞
of the following generative model:

πk|α, β ∼ Beta
(

αβ

K
, β

)
(5)

zkt|πk ∼ Bernoulli(πk) (6)

In the one parameter IBP we fix β = 1. Through a stochastic process

representation of this model we find the conditional probability of an element

being 1 given all other elements is

P (zkt = 1|z−kt, β) =
mk,−t

β + N − 1
(7)

where mk,−t =
∑

s 6=t zks. This facilities sampling of the elements of Z.



We demonstrate Bayesian inference under each model variant using Markov

Chain Monte Carlo (MCMC) methods: Gibbs sampling where possible and

Metropolis-Hastings otherwise. We wish to infer the model parameters and

hidden variables θ = {G,X,Z, σ2
e , σ

2
g , α, β} given observed data Y. Gibbs

sampling proceeds by sampling successively from the conditional distribu-

tion of one parameter given all others, i.e. P (θi|Y,θ−i) ∝ P (Y|θ)P (θi),

by Baye’s rule. Asymptotically this generates samples from the posterior

P (θ|Y).

The proposed algorithms are tested on 30 datasets generated randomly

from our model, with K = 6 sources, D = 200 samples and D = 7 observed

variables. Figure 1 shows boxplots of the Amari error for each algorithm

alongside corresponding results for FastICA for comparison. The perfor-

mance is superior to the standard FastICA algorithm.

Figure 1: Boxplots of Amari errors for 30 synthetic data sets with D = 7, N =
6, N = 100 for each algorithm.

The algorithms successfully unmix artifically mixed audio sources, with

one variant performing significantly better than FastICA and also being able

to show when the sources are active. When applied to gene expression data

from an ovarian cancer study the results are consistent with those in the

literature. Finally the algorithms are applied to the growth rates of eleven

FTSE100 companies. Hidden sources are inferred which account for the

correlation across companies in the same industry.
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1 Introduction

Independent Components Analysis (ICA) is a model which explains observed data,

yt (dimension D) in terms of a linear superposition of independent hidden sources,

xt (dimension K), so

yt = Gxt + εt (8)

where G is the mixing matrix and εt is Gaussian noise. In the standard ICA model

we assumeK = D and that there exists W = G−1. Various algorithms for inferring

W and X have been proposed, including steepest descent [4], covariant maximum

likelihood [14], mixture of Gaussians based Independent Factor Analysis [2], con-

strast function based FastICA [12], and the cumultant based JADE [5]. It can

be shown that most of these algorithms are equivalent to directly or indirectly

maximising some measure of the non-gaussianity of the outputs. As a result, these

algorithms will not work well with true Gaussian sources because the contrast func-

tions become rotationally invariant. In fact most algorithms are designed to work

best with heavy-tailed super-Gaussian source distributions which are common in

nature, but some will also work well with light-tailed sub-Gaussian distributions.

Figure 2 illustrates this dependence on the source distribution for a 2x2 mixture.

FastICA is able to correctly calculate the mixing matrix in the case of heavy-tailed

(Cauchy or Laplace) and light-tailed (uniform) source distributions, but not for

Gaussian source distributions.

The assumption K = D may be invalid, so Reversible Jump MCMC [20] could

be used to infer K. Alternatively, Automatic Relevance Determination [15] sup-

presses irrelevant components. In this paper we propose a sparse implementation

which allows a potentially infinite number of components and the choice of whether

a hidden source is active for a data point. Although ICA is not a true time-series

model it has been used successfully in analysing time-series data such as mixed au-

dio (blind source separation) [2], stock returns [3], and electroencephalograms [16].

Note that attempts have been made to incorporate temporal learning into ICA, for

example in [19]. It has also been applied to gene expression data [17], and it is this

application that we choose for a demonstration.
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(a) Gaussian sources. The mixture is rota-
tionally invariant so inference is unsuccessful.

(b) Laplacian sources. Slightly heavy tailed
so inference is possible but inaccurate.

(c) Heavy tailed (Cauchy) sources. Accurate
determination of directions: note PCA still
fails because of orthogonal eigenvector con-
straint.

(d) Uniform sources. Light tailed so infer-
ence is possible.

Figure 2: ICA for different source distributions, showing the true mixing matrix
directions and those inferred by ICA (using the FastICA algorithm) and PCA.
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Figure 3: Neural network view of ICA. The sources x are estimated by a demixing
matrix W and a non-linearity φ(·).

1.1 Infomax Origins

ICA can be viewed as a blind source separation algorithm from an information

theoretic perspective. The formulation of [4] attempts to maximise the mutual in-

formation I(X̂,Y) of a single layer non-linear neural network, as shown in Figure 3.

The mutual information is given by:

I(X̂,Y) = H(X̂)−H(X̂|Y) (9)

where H is the differential entropy:

H(X) = −
∫
p(x) log p(x)dx (10)

For a system x̂ = ψ(y) + e where ψ is an invertible (i.e. monotonically increasing)

transformation and e is additive noise, H(X̂|Y) = H(e). Thus the only component

of I(X̂,Y) that depends on the weights W is H(X̂): maximising the mutual in-

formation is equivalent to maximising the entropy of the output. The multivariate

probability density function of x̂ can be written

fx̂(x̂) =
fy(y)

|J|
(11)
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where |J| is the absolute value of the Jacobian of the transformation. Thus the

entropy of the output

H(X̂) = −
∫
fx̂(x̂) ln fx̂(x̂)dx̂ (12)

= −
∫
fy(y) ln

fy(y)

|J|
dy (13)

= E[ln |J|] +H(Y) (14)

Since H(Y) is fixed our aim becomes to maximise E[ln |J|], which is the volume in

x̂ that points in y are mapped to. Thus we attempt to spread the output as much

as possible. The Jacobian for a single data point is

J = |W|
∏

i

φ′(ai) (15)

⇒ ln |J| = ln |W|+
∑

i

lnφ′(ai) (16)

Maximising this expression with respect to the mixture weights with sigmoidal φ(·)
using steepest descent gives Bell and Sejowski’s algorithm [4]:

∆W ∝W−T + (1− 2x̂)yT (17)

FastICA [12] is a more efficient algorithm derived within the mutual information

framework but which optimizes a constrast function which is an appromixation to

the negentropy, a measure of non-gaussianity, of the outputs.

1.2 From infomax to Maximum Likelihood

We will now show that this information maximisation approach is equivalent to

maximum likelihood estimation in the no noise limit, following Mackay [14]. The
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likelihood function for a single data point is then

P (y(n)|G) =

∫
P (y(n)|G,x(n))P (x(n))dx(n) (18)

=

∫ ∏
j

δ(y
(n)
j − (Gx(n))j)

∏
i

pi(x
(n)
i )dx(n) (19)

=
1

|G|
∏

i

pi(ai) (20)

where a = G−1y and we have used the matrix analogy to the scalar identity∫
δ(y − gx)f(x)dx = 1

g
f
(

y
g

)
. Now let Ŵ = G−1 we have

lnP (y(n)|G) = ln |Ŵ|+
∑

i

ln pi(ai) (21)

We see this is equivalent to Equation (16) if we identify Ŵ = W and use the

interpretation that the non-linearity φi(·) should approximate the cdf of pi.

φi(ai) =

∫ ai

−∞
pi(x)dx (22)

⇒ φ′i(ai) = pi(ai) (23)

This equivalence was shown independently in [6] by showing both methods min-

imise the KL divergence between the true and estimated densities of x. In [14]

Equation (21) is maximised using an approximation of Newton’s algorithm (∆w =

−H−1∇ lnP (y(n)|G), where H is the Hessian matrix) to give a faster, simpler,

covariant (i.e. scale invariant) algorithm which does not require inversion of the

mixing matrix at each step:

∆W ∝ (I− x̂aT )W (24)

1.3 Bayesian inference

Maximum Likelihood estimation is known to be associated with various problems,

primarily overfitting and local maxima. A full Bayesian treatment would attempt

to calculate the posterior over the model parameters and hidden variables, H, given
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the observed data, V , i.e.

P (H|V) =
P (V|H)H
P (V)

(25)

This calculation is in general not analytically tractable, so we need to use an

approximation. Two main approaches exist: variational methods and Monte Carlo

methods.

1.3.1 Variational methods

Variational methods try to find an approximation q(H) to the true distribution

P (H|V). From Jensen’s inequality, a rigorous lower bound on the marginalised log

likelihood can be obtained:

ln

∫
P (H,V)dH ≥

∫
q(H) ln

P (H,V)

q(H)
dH (26)

The difference between the lower bound and the true marginalised log likelihood is

given by the Kullback-Lieber divergence between the approximation q(H) and the

true distribution P (H|V):

KL(P ‖ q) =

∫
q(H) ln

P (H|V)

q(H)
dH (27)

The approximation q must be choosen to be sufficiently simple to allow analytic and

computational tractability but flexible enough to allow the bound in Equation (26)

to be tight. Often a factored distribution is used which assumes independence

between the various model parameters. Both [13] and [7] develop Bayesian ICA

models using this approach with mixture of Gaussian source distributions (as in

IFA [2]), but the nature of the IBP prior used in this paper makes Monte Carlo

methods the natural choice for this project.

1.3.2 Monte Carlo methods

For all but the simplest models finding the posterior over the parameters is not

analytically possible so we attempt to approximate it by drawing samples using

MCMC, methods which take a random walk whose stationary distribution is the
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target distribution. We can then find expectations using the unbiased estimator:

∫
g(θ)P (θ|V)dθ ≈ 1

S

S∑
s=1

g(θ(s)), θ(s) ∼ P (θ|V) (28)

The simplest MCMC method is the Metropolis-Hastings algorithm, which re-

quires a proposal distribution Q(θ′; θ). We draw a new sample θ′ from this distri-

bution, and accept it with probability min (1, rθ→θ′) where

rθ→θ′ =
P (θ′|V)Q(θ; θ′)

P (θ|V)Q(θ′; θ)
(29)

It can easily be shown that this proposal ensures detailed balance:

Q(θ′; θ)P (θ|V) = Q(θ; θ′)P (θ′|V) (30)

Detailed balance in turn ensures that P (θ|V) is a stationary distribution of the

Markov chain, since by integrating with respect to θ′ we find

P (θ|V) =

∫
P (θ′|V)Q(θ; θ′)dθ′ (31)

The problem with Metropolis-Hastings is how to choose the proposal distribu-

tion Q: too broad and most of the proposas will be rejected, too narrow and it

will take too long for the Markov chain to explore the distribution. There is no

such arbitrary choice to make using Gibbs sampling, an MCMC algorithm where

we successively sample each parameter, θk from its conditional distribution given

all the other parameters, θ−k, i.e. P (θk|θ−k,V). It can be shown [8] that this pro-

cedure generates samples from the parameter posterior, P (θ|V). Where possible

we will use Gibbs sampling rather than Metropolis-Hastings, but for some steps

this is not possible.
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Figure 4: Diagrammatic representation of Infinite ICA model

2 The Model

We define a binary vector zt which acts as a mask on xt. Element zkt specifies

whether hidden source k is active for data point t. Thus

Y = G(Z�X) + E (32)

where � denotes element-wise multiplication and X, Y, Z and E are concatenated

matrices of xt, yt, zt and εt respectively. We allow a potentially infinite number of

hidden sources, so that Z has infinitely many rows, although only a finite number

will have non-zero entries. We assume Gaussian noise with variance σ2
ε , which is

given an inverse Gamma prior, i.e.

P (σ2
ε |a, b) = IG

(
σ2

ε ; a, b
)

=
(σ2

ε )
−(a+1)

baΓ(a)
exp

(
− 1

bσ2
ε

)
(33)

We define two variants based on the prior for xkt: infinite sparse Factor Analysis

(isFA) has a unit Gaussian prior; infinite Independent Components Analysis (iICA)

has a Laplacian(1) prior. Varying the variance is redundant because we infer the

variance of the mixture weights. The prior on the elements of G is Gaussian with

variance σ2
G, which is given an inverse Gamma prior. We define the prior on Z

using the Indian Buffet Process with parameter α (and later β) as described in

Section 2.1 and in more detail in [11]. We place Gamma priors on α and β.

13



All four variants share

εt ∼ N
(
0, σ2

ε I
)

σ2
ε ∼ IG (a, b) (34)

gk ∼ N
(
0, σ2

G

)
σ2

G ∼ IG (c, d) (35)

Z ∼ IBP(α, β) α ∼ G (e, f) (36)

The differences between the variants are summarised here.

xkt ∼ N (0, 1) xkt ∼ L(1)

β = 1 isFA1 iICA1

β ∼ G (1, 2) isFA2 iICA2

2.1 Defining a distribution on an infinite binary matrix

2.1.1 Start with a finite model.

We derive our distribution on Z by defining a finite K model and taking the limit

as K →∞. We then show how the infinite case corresponds to a simple stochastic

process.

We have N data points and K hidden sources. Recall that zkt of matrix Z tells

us whether hidden source k is active for time t. We assume that the probability

of a source k being active is πk, and that the sources are generated independently.

We find

P (Z|π) =
K∏

k=1

N∏
t=1

P (zkt|πk) =
K∏

k=1

πmk
k (1− πk)

N−mk (37)

where mk =
∑N

t=1 zkt is the number of data points for which source k is active. The

inner term of the product is a binomial distribution, so we choose the conjugate

Beta(r,s) distribution for πk. For now we take r = α
K

and s = 1, where α is the

strength parameter of the IBP. The model is defined by

πk|α ∼ Beta
( α
K

)
(38)

zkt|πk ∼ Bernoulli(πk) (39)

Due to the conjugacy between the binomial and beta distributions we are able to

14



integrate out π to find

P (Z) =
K∏

k=1

α
K

Γ(mk + α
K

)Γ(N −mk + 1)

Γ(N + 1 + α
K

)
(40)

where Γ(.) is the Gamma function.

2.1.2 Take the infinite limit.

By defining a scheme to order the non-zero rows of Z (see [11]) we can take K →∞
and find

P (Z) =
αK+∏
h>0Kh!

exp {−αHN}
K+∏
k=1

(N −mk)!(mk − 1)!

N !
(41)

where K+ is the number of active features, HN =
∑N

j=1
1
j

is the N -th harmonic

number, and Kh is the number of rows whose entries correspond to the binary

number h.

2.1.3 Go to an Indian Buffet.

This distribution corresponds to a simple stochastic process, the Indian Buffet

Process. Consider a buffet with a seemingly infinite number of dishes (hidden

sources) arranged in a line. The first customer (data point) starts at the left and

samples Poisson(α) dishes. The ith customer moves from left to right sampling

dishes with probability mk

i
where mk is the number of customers to have previously

sampled that dish. Having reached the end of the previously sampled dishes, he

tries Poisson(α
i
) new dishes. Figure 5 shows two draws from the IBP for two

different values of α.

If we apply the same ordering scheme to the matrix generated by this process

as for the finite model, we recover the correct exchangeable distribution. Since the

distribution is exchangeable with respect to the customers we find by considering

the last customer that

P (zkt = 1|z−kt) =
mk,−t

N
(42)

where mk,−t =
∑

s 6=t zks, which is used in sampling Z. By exchangeability and
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(a) α = 4 (b) α = 8

Figure 5: Draws from the one parameter IBP for two different values of α.

considering the first customer, the number of active sources for a data point follows

a Poisson(α) distribution, and the expected number of entries in Z is Nα. We also

see that the number of active features, K+ =
∑N

t=1 Poisson(α
t
) = Poisson(αHN).

2.1.4 Two parameter generalisation.

A problem with the one parameter IBP is that the number of features per object,

α, and the total number of features, Nα, are both controlled by α and cannot vary

independently. Under this model, we cannot tune how likely it is for features to

be shared across objects. To overcome this restriction we follow [9], introducing

β, a measure of the feature repulsion. The ith customer now samples dish k with

probability mk

β+i−1
and samples Poisson( αβ

β+i−1
) new dishes.

Figure 6 shows draws from the two parameter IBP for two different values of

β. For β < 1 we get increased sharing of sources amongst data points, as in

Figure 6(a), and for β > 1 we get reduced sharing, as in Figure 6(b).

Following the same thread as for the one parameter IBP, we find

P (zkt = 1|z−kt, β) =
mk,−t

β +N − 1
(43)

The marginal probability of Z becomes

P (Z|α, β) =
(αβ)K+∏

h>0Kh!
exp {−αHN(β)}

K+∏
k=1

B(mk, N −mk + β) (44)
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(a) α = 8, β = 0.1 (b) α = 8

Figure 6: Draws from the one parameter IBP for two different values of α.

where C is a constant with respect to α and β, and HN(β) =
∑N

j=1
β

β+j−1
. The

expected overall number of active features is now K̄+ = αHN(β). We will derive

all our results for the two parameter case because it is straightforward to recover

the one parameter case by setting β = 1.

2.2 Stick Breaking Construction

An alternative representation of the IBP has recently been proposed for the one-

parameter IBP in [21], which allows a slice sampling method to be derived allowing

potentially faster mixing in the non-conjugate source distribution case. Again we

start with the finite case, but now construct a decreasing ordering of the πk of

Equation (38): π(1) > π(2) > · · · > π(K). In [21] it is shown that µ(k) obey the

following equation:

ν(k) ∼ Beta (α, 1)π(k) = ν(k)µ(k−1) =
k∏

l=1

ν(l) (45)

The analogy we use is as follows. We start with a stick of length one, and break

off a length ν(1), and record its length as π(1). At iteration k, we break off a length

ν(k) relative to the remaining length, and record its length as π(k).
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3 Inference

Given the observed data Y, we wish to infer the hidden sources X, which sources are

active Z, the mixing matrix G, and all hyperparameters. We use Gibbs sampling,

but with Metropolis-Hastings (MH) steps for β and sampling new features. We

draw samples from the marginal distribution of the model parameters given the

data by successively sampling the conditional distributions of each parameter in

turn, given all other parameters. Pseudocode for the overall algorithm can be found

in Appendix C.

3.1 Likelihood function

The likelihood function for a specific data-point, t, is

P (yt|G,xt, zt, σ
2
ε ) = N

(
yt;G(zt ◦ xt), σ

2
ε I
)

(46)

=
1√
2πσε

exp

{
− 1

2σ2
ε

(yt −G(zt ◦ xt))
T (yt −G(zt ◦ xt))

}
(47)

since yt = G(zt ◦ xt) + εt.

Since the data-points are assumed i.i.d. the likelihood function for the whole

dataset is just

P (Y|G,X,Z) =
N∏

t=1

P (yt|G,xt, zt) (48)

=
1

(2πσ2
ε )

ND
2

exp

{
− 1

2σ2
ε

tr (Y −G(Z ◦X))T (Y −G(Z ◦X))

}
(49)

3.2 Hidden sources.

We sample each element of X for which zkt = 1. We denote the k-th column of

G by gk and εt|zkt=0 by ε−kt. For isFA we find (see Appendix A.1.1) this is a
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Gaussian:

P (xkt|G,x−kt,yt, zt) ∝ P (yt|G,xt, zt, σ
2
ε )P (xkt) (50)

= N
(
xkt;

gT
k ε−kt

σ2
ε + gT

k gk

,
σ2

ε

σ2
ε + gT

k gk

)
(51)

For iICA we find (see Appendix A.1.2) a piecewise Gaussian distribution, which it

is possible to sample from analytically given the inverse of the Gaussian cdf.

P (xkt|G,x−kt,yt, zt) =

{
B+

A
N (xkt;µ+, σ

2) xkt > 0
B−
A
N (xkt;µ−, σ

2) xkt < 0
(52)

where µ±, σ, B± and A are defined in Equation (96).

3.3 Active sources.

To sample Z we first define the ratio of conditionals, r

r =
P (zkt = 1|G,X−kt,Y,Z−kt)

P (zkt = 0|G,X−kt,Y,Z−kt)
(53)

=
P (yt|G,x−kt, z−kt, zkt = 1, σ2

ε )

P (yt|G,x−kt, z−kt, zkt = 0, σ2
ε )︸ ︷︷ ︸

rl

P (zkt = 1|z−kt)

P (zkt = 0|z−kt)︸ ︷︷ ︸
rp

(54)

so that P (zkt = 1|G,X−kt,Y,Z−kt) = r
r+1

. From Equation (43) we find the ratio

of priors is rp =
mk,−t

β+N−1−mk,−t
. The likelihood evaluated with zkt = 0 is

P (yt|G,x−kt, z−kt, zkt = 0) =
1

(2πσ2
ε )

D
2

exp

{
−

εT
−ktε−kt

2σ2
ε

}
(55)

where ε−kt = εt|zkt=0 is the error vector εt evaluated with zkt = 0. To find

P (yt|G,x−kt, z−kt, zkt = 1) we must marginalise over all possible values of xkt.

P (yt|G,x−kt, z−kt, zkt = 1, σ2
ε ) =

∫
P (yt|G,xt, z−kt, zkt = 1, σ2

ε )P (xkt)dxkt (56)

This result clearly depends on the form of the prior on xkt.

For isFA the integrand is that of Equation (50) so we are able to use the same
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results.

P (yt|G,x−kt, z−kt, zkt = 1, σ2
ε ) =

1

(2πσ2
ε )

D
2

1√
2π

∫
exp

{
− 1

2σ2
‖ε−kt − gkxkt‖2 −

x2
kt

2

}
dxkt

(57)

Using Equation (50) and integrating we find the ratio of likelihoods rl = σ exp
{

µ2

2σ2

}
where σ2 = σ2

ε

σ2
ε +gT

k gk
and µ =

gT
k ε−kt

σ2
ε +gT

k gk

For iICA we have

P (yt|G,x−kt, z−kt, zkt = 1, σ2
ε ) =

1

(2πσ2
ε )

D
2

1

2

∫
exp

{
− 1

2σ2
‖ε−kt − gkxkt‖2 − |xkt|

}
dxkt

(58)

Completing the square and integrating above and below zero we find the ratio of

likelihoods is

rl = σ

√
π

2

[
F (0;µ+, σ) exp

{
µ2

+

2σ2

}
+ (1− F (0;µ−, σ)) exp

{
µ2
−

2σ2

}]
(59)

where µ−, µ+, σ are as defined in Equation (96).

If zkt is changed from 0 to 1 we interleave a sampling of xkt. If it is changed

from 1 to 0 we set xkt = 0.

3.4 Creating new features.

Z is a matrix with infinitely many rows, but only the non-zero rows can be held in

memory. However, the zero rows still need to be taken into account. Let κt be the

number of rows of Z which contain 1 only in column t, i.e. the number of features

which are active only at time t. Figure 7 illustrates κt for a sample Z matrix.

New features are proposed by sampling κt with a MH step. We propose a move

ξ → ξ∗ with probability J(ξ∗|ξ), following [18], we set to be equal to the prior on

ξ∗. This move is accepted with probability min (1, rξ→ξ∗) where

rξ→ξ∗ =
P (ξ∗|rest)J(ξ|ξ∗)
P (ξ∗|rest)J(ξ∗|ξ)

=
P (rest|ξ∗)P (ξ∗)P (ξ)

P (rest|ξ)P (ξ)P (ξ∗)
=
P (rest|ξ∗)
P (rest|ξ)

(60)

By this choice rξ→ξ∗ becomes the ratio of likelihoods. From the IBP the prior for
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Figure 7: A diagram to illustrate the definition of κt.

κt is

P (κt|α) = Poisson(
αβ

β +N − 1
) (61)

For isFA we find it is possible to integrate out x′t, the new elements of xt, but

not G′, the new columns of G, so our proposal ξ∗ includes not only κ∗t but also the

new columns G∗. We now marginalise over x′t.

P (yt|G,G′,xt, zt, κt, σ
2
ε ) =

∫
P (yt|G,G′,xt,x

′
t, zt)P (x′t)dx

′
t (62)

= (2πσ2
ε )
−D

2 (2π)−
κt
2

∫
exp

{
− 1

2σ2
ε

‖εt −G′x′t‖2 −
x′t

Tx′t
2

}
dx′t

(63)

Integrating and using Equation (60) we have

rξ→ξ∗ = |Λ|−
1
2 exp

(
1

2
µTΛµ

)
(64)
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where Λ = I + G∗T G∗

σ2
ε

and Λµ = 1
σ2

ε
G∗T εt.

For iICA it is not possible to integrate out x′t or G′ so these are included in the

proposal, ξ = {G′,x′t, κt}. From Equation (60) we find

rξ→ξ∗ = exp

{
− 1

2σ2
ε

x′Tt G∗T (G∗x′t − 2εt)

}
(65)

3.5 Mixture weights.

We sample the columns gk of G. We denote the kth row of Z � X by sk
T . We

have P (gk|G−k,X,Y,Z, σ
2
ε , σ

2
G) ∝ P (Y|G,X,Z, σ2

ε )P (gk|σ2
G). The total likeli-

hood function has exponent

− 1

2σ2
ε

tr(ETE) = − 1

2σ2
ε

((sk
T sk)(g

T
k gk)− 2gT

k E|gk=0) + const (66)

where E = Y − G(X � Z). This is shown in Appendix A.2. We thus find

the conditional of gk, P (gk|G−k,X,Y,Z, σ
2
ε , σ

2
G) ∝ P (Y|G,X,Z, σ2

ε )P (gk|σ2
G) =

N (gk; µ,Λ) by comparing coefficients in gk, where

Λ =

(
sk

T sk

σ2
ε

+
1

σ2
G

)
ID×D (67)

µ =
σ2

G

sk
T skσ2

G + σ2
ε

E|gk=0sk (68)

where E|gk=0 is Y −G(X� Z) evaluated with gk = 0.

3.6 Learning the noise level.

We allow the model to learn the noise level σ2
ε . Applying Bayes’ rule we find (see

Appendix A.3)

P (σ2
ε |E, a, b) ∝ P (E|σ2

ε )P (σ2
ε |a, b) = IG

(
σ2

ε ; a+
ND

2
,

b

1 + b
2
tr (ETE)

)
(69)

where E = Y−G(X�Z). We draw samples from the inverse Gamma distribution

by taking the reciprocal of samples drawn from a Gamma distribution with the

same parameters.
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3.7 Inferring the scale of the data.

For sampling σ2
G the conditional prior on G acts as the likelihood term since the

likelihood itself is independent of σ2
G given G so we find (see Appendix A.4)

P (σ2
G|G, c, d) ∝ P (G|σ2

G)P (σ2
G|c, d) = IG

(
σ2

G; c+
DK

2
,

d

1 + d
2
tr (GTG)

)
(70)

3.8 IBP parameters.

We infer the IBP strength parameter α. The conditional prior on Z, given by

Equation (44), acts as the likelihood term so we find (see Appendix A.5)

P (α|Z, β) ∝ P (Z|α, β)P (α) = G
(
α;K+ + e,

f

1 + fHN(β)

)
(71)

We sample β by a Metropolis-Hasting’s step with acceptance probability min (1, rβ→β∗).

By Equation (60) we know that setting the proposal distribution equal to the prior,

i.e. J(β∗|β) = P (β∗) = G (1, 1), results in rβ→β∗ being equal to the ratio of likeli-

hoods, in this case P (Z|α,β∗)
P (Z|α,β)

as given in Equation (44).

3.9 Slice Sampler

As a result of the stick-breaking construction of the IBP, an alternative inference

scheme can be used which where the πk are not integrated out. We define an

auxiliary variable s which is effectively an adaptive truncution level for π. We

sample

s|Z, π(1:∞) ∼ Uniform[0, π∗] (72)

where π∗ is the smallest value of π for all the active features (i.e. those which are

active for at least one data point). Given s, the posterior distribution of Z is

P (Z|rest, s, π(1:∞)) ∝ P (Z|rest, π(1:∞))P (s|Z, π(1:∞)) (73)

∝

{
P (Z|rest, π(1:∞)) 0 ≤ s ≤ π∗

0 otherwise
(74)
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Figure 8: Top: A draw of π(k) using the stick breaking construction with α = 1.5.
Bottom: A corresponding draw of Z with N = 20, shown transposed.

Thus all rows of Z for which πk < s must be zero. We denote the maximal

feature index with π(k) > s by K∗, and note that we need only update features

for k < K∗. Our computational representation for the slice sampler will include

up to feature K†. We may have to pad our representation with inactive features

to ensure K∗ < K†. Figure 8 shows a draw of π(k) for α = 1.5, N = 20, with

the corresponding Z matrix. The significance of the parameters π∗, s,K∗ is also

illustrated.

In [21] it is shown that the new stick lengths can be drawn iteratively from

p(π(k)|π(k−1), z>k,: = 0) (75)

∝

{
exp

{
α
∑i=1

N
1
i
(1− π(k))

i
}
πα−1

(k) (1− π(k))
N , 0 ≤ π(k) ≤ π(k−1)

0, otherwise
(76)

We sample from this distribution using Adaptive Rejection Sampling [10] because

it is log-concave in log π(k).
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To sample zkt we now use the formula:

P (zkt = 1|rest) ∝ P (yt|G,x−kt, z−kt, zkt = 1)P (s|Z, π(1:∞))P (zkt = 1|π(k)) (77)

∝ P (yt|G,x−kt, z−kt, zkt = 1)
π(k)

π∗
(78)

Note that π∗ is a function of Z and so may change if zkt changes.

We sample π(k)∀k = 1, · · · , K† − 1 from

p(π(k)|rest) ∝

{
πmk−1

(k) (1− π(k))
N−mk π(k+1) ≤ π(k) ≤ π(k−1)

0, otherwise
(79)

This distribution can also be sampled using ARS. We sample π(K†) using Equa-

tion (75) with k = K†.

3.10 Semi-ordered Slice Sampling

It turns out that we only really need to enforce the ordering of π(k) on the inactive

features. We will store K+ active, unordered features, and K◦ inactive, ordered

ones. For the active features, π+
k

π+
k |zk,: ∼ Beta(mk, N −mk + 1) (80)

For the inactive features, π◦(k) are sampled from Equation (75). Our sampler will

now take the following steps:

1. Sample s

2. Generate new features until π◦(K◦+1) < s

3. Sample the active and inactive features as before

4. Remove inactive features

5. Sampling π+
k from their conditional Equation (80)
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4 Results

4.1 Evaluation

How best to evaluate the algorithm depends on whether the data under consider-

ation is synthetic or real world. In the synthetic case we can compare inferred G,

X and Z to known ground truth data, using the standard Amari error which is

both scale and permutation invariant in X. In the case of real world data we do

not ground truth values to compare to, so we instead attempt evaluate predictive

performance on test data.

4.1.1 Amari error

Let S = X� Z, then in the no noise limit we have

Y = GS (81)

However, there are two indetermancies: scaling by a diagonal matrix Σ and per-

mutation by a matrix Π of the sources:

Y = GΣ−1Π−1ΣΠS (82)

If we now write the inferred sources Ŝ = MS and mixing matrix Ĝ = GM−1 then

we see that we have recovered the sources optimally if M = ΣΠ. Solving for M

we find

M = (ŜST )(SST )−1 (83)

We can now define the Amari error in terms of M.

E =
1

2KK ′ −K ′ −K

(
K′∑
i=1

(∑K
j=1 |Mij|

maxk |Mik|
− 1

)
+

K∑
j=1

(∑K
i=1 |Mij|

maxk |Mkj|
− 1

))
(84)

where K is the true number of sources and K ′ is the inferred number. The Amari

error is normally defined for K = K ′ but since we infer the number of sources we

may have K 6= K ′. The Amari error is the sum over rows and columns of the

deviation from there only being one main entry per column, normalised so that the
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maximum error is 1. For perfect recovery the Amari error will be zero.

4.1.2 Cross validation

To evaluate predictive performance, we can separate the data into training data,

D1, and test data, D2. As part of the algorithm we evaluate L2|1 = logP (D2|D1) ≈∫
logP (D2|θ)P (θ|D1)dθ, where θ is the set of all parameters of the model (X2 and

Z2 for the test data must be also be inferred).

4.1.3 Predictive performance

A more “honest” way to assess the algorithm’s performance is to look at how well

it predicts a future value of the data by evaluating p(y|Y) where y is the new data

point. This is similar to Leave Out One Cross Validation, and is a computationally

intensive but rigorous performance index. We take S = 20 independent samples of

θ = {G,X,Z, σε} from the algorithm and use the approximation

p(y|Y) =

∫
p(y, θ|Y)dθ

=

∫
p(y|θ)p(θ|Y)dθ

≈ 1

S

S∑
s=1

p(y|θ(s)), θ(s) ∼ p(θ|Y) (85)

We now need to evaluate p(y|θ) which we do by integrating out the hidden sources

for this data point, x and sampling over which of these sources are active, z. Firstly

integrating over x:

p(y|z, θ) =

∫
p(y|z, θ)p(x)dx (86)

We let Aij = Gijzj (no sum over j) so that G(x� z) = Ax. For isFA we have

p(y|z, θ) =

∫
1

(2πσ2
ε )

D
2

exp

{
− 1

2σ2
ε

‖y −Ax‖2
}

1

(2π)
K
2

exp

{
−1

2
xTx

}
dx

=
|Σ|

(2πσ2
ε )

D
2

exp

{
1

2
µTΣ−1µ− 1

2σ2
ε

yTy

}
(87)
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where Σ−1 = 1
σ2

ε
ATA + I and Σ−1µ = 1

σ2
ε
ATy. We can then marginalise over z

p(y|θ) =
∑
z

p(y|z, θ)P (z|Z, α, β)

≈ 1

U

U∑
u=1

p(y|z(u), θ), z(u) ∼ P (z|Z, α, β) (88)

where P (z|Z, α, β) is given by the IBP. The pseudocode for this evaluation is shown

in Algorithm 1.

Algorithm 1 Calculate the predictive performance p(y|Y)

1: for s = 1, · · · , S do
2: for u = 1, · · · , U do
3: Draw z ∼ P (z(u)|Z, α, β) using Equation (43)
4: Calculate p(y|z(u), θ(s)) from Equation (87)
5: end for
6: Calculate p(y|θ(s)) from Equation (88)
7: end for
8: Calculate p(y|Y) from Equation (85)

4.2 Synthetic data

The algorithms were tested on synthetic data with N = 200, D = 8, X and G

drawn from their priors, and the Z shown in Figure 9(a), with K = 6 hidden

sources. Although G was drawn from its prior we ensured it was not too close to

being singular by restricting its condition number to be less than 5. This ensures

the problem is well conditioned and it is at least theoretically possible to recover

the soures. The average Z inferred by iICA2 is shown in Figure 9(a). We find

the sources within an arbitrary ordering. The gaps in the inferred Z are a result

of inferring zkt = 0 where xkt = 0. Figure 9(b) shows the variation of the log

likelihood and posterior over a long, 104 iteration run, and Figure 10 shows the

main parameters’ variation over a 1000 iteration run.

Figure 11(a) shows L2|1 (see Section 4.1.2) for each variant: the predictive

power of iICA appears to be greater than that of isFA, and the two-parameter

IBP versions show worse generalization. Figure 11(b) shows the permutation-

invariant normalised Amari error [1] for each variant on synthetic data with a
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(a) Top: True Z. Bottom: Inferred Z. Red
box denotes test data.

(b) Plot of the log likelihood and posterior
for the duration of the iICA2 run.

Figure 9: True and inferred Z and algorithm convergence.

Gaussian or Laplacian prior on X. As expected, the more appropriate algorithm

for the structure of the data performs best: isFA performs better on Gaussian than

Laplacian data; and visa versa for iICA. Interestingly, iICA seems significantly

worse at dealing with normally distributed data than isFA is at coping with heavy

tailed data. This suggests that isFA is more robust to non-standard distributions

than iICA. The two parameter IBP variants of both algorithms actually perform

no better than the one parameter versions: β = 1 happens to be almost optimal

for the synthetic Z used, so the one-parameter versions are not penalised by this

restriction. Even the apparent improvement of iICA2 over iICA1 on Gaussian data

is in fact because it allowed two inferred hidden sources to account for the greater

variance of the true hidden source 1.

To compare the algorithm’s performance to standard ICA we ran the one-

parameter variants (isFA1 and iICA1) and three FastICA variants (using the pow3,

tanh and gauss non-linearities) on 30 sets of randomly generated data. We did

this for both Gaussian and Laplacian source distributions, the results of which are

shown in Figure 12. Figure 12(a) shows the results when the synthetic data has

Gaussian source distributions. Both isFA1 and iICA1 perform significantly better

on the sparse synthetic data than any of the FastICA variants, which is unsur-

prisingly as we do not expect FastICA to recover Gaussian sources. The median

average performance is very similar for both, although the iICA1 performance is

more variable with both more very low error results and more high error outliers.

Figure 12(b) shows the results when the synthetic data has Laplacian source dis-
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Figure 10: A typical isFA2 run on synthetic data.
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(a) Log likelihood of test data for each vari-
ant.

(b) Amari error for the four algorithm vari-
ants.

Figure 11: Results on Gaussian or Laplacian synthetic data.

tributions. As expected the FastICA performance is much improved because the

sources are heavy tailed. However, isFA1 and iICA1 still perform better because

they correctly model the sparse nature of the data. As expected iICA1 outperforms

isFA1 in this case because it uses the correct source distribution.

(a) Gaussian sources. (b) Laplacian sources.

Figure 12: Boxplots of Amari errors for 30 synthetic data sets with D = 7, N =
6, N = 100 analysed using isFA1, iICA1 and FastICA algorithm variants. The red
line shows the median, the box the interquartile range, the whiskers the extend of
the remaining data, and the red crosses are outliers.
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4.3 Audio data

We now apply the algorithms to a slightly more realistic dataset: an artificially

mixed set of four audio sources, three speech and one music, with N = 5000

samples. Artificially mixing the sources prevents real world artifacts such as echoes

which would have unpredictable effects on the algorithm performance. The original

and mixed signals are shown in Figure 13.

(a) Original sources. (b) Mixed signals.

Figure 13: Artificially mixed audio dataset.

Each algorithm variant was run on this dataset for 1000 iterations, and the

average source matrix X calculated for the last 500 iterations. The Amari error

was then calculated for each, and is shown in Figure 14(a). The error is smallest for

isFA1, and slightly greater for isFA2, roughly inline with the FastICA performance.

The superior performance of isFA1 over the FastICA algorithm is because our model

naturally models the periods when the sources are inactive. The iICA variants

perform much worse (although on an absolute scale an Amari error of 0.1 still

implies the sources were recovered), implying that this data is not well modelled by

the Laplacian source distribution assumption. Figure 14(b) and 14(c) and shows

the sources X and average Z recovered respectively by isFA1. The agreement

(within permutation and scaling) of the inferred and true sources is excellent, and

Z quite accurately represents when the sources were active.
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(a) Amari error for each algorithm run on
the audio dataset.

(b) Recovered sources.

(c) Infered Z matrix.

Figure 14: Output of isFA1 algorithm on audio dataset.

4.4 Gene expression data

We now apply our model to the microarray data from an ovarian cancer study [17],

which represents the expression level of D = 172 genes across N = 17 tissue

samples. These include 5 normal ovary, 5 serous papillary adenocarcinoma (spa),

4 poorly differentiated serous papillary adenocarcinoma (pd-spa), 1 benign serous

cystadenoma (bsc), and 2 benign mucinous cystadenoma (bmc). ICA was applied

to this dataset in [17]. The performance of our four variants on this data for

5000 iteration runs is compared in Figure 15(b). iICA1 appears to perform best,

producing the inferred X shown in Figure 15(a). Gene signature (hidden source)

1 is expressed across all the tissue samples, accounted for genes shared by all the

samples. Signature 7 is specific to the pd-spa tisue type. This is consistent with

that found in [17], with the same top 3 genes. Such tissue type dependent signatures

could be used for observer independent classification. Signatures such as 5 which

is differentially expressed across the pd-spa samples could help subclassify tissue

types. Tissue sample 1 is pre-menopausal, which is detected by gene signature 3.

Miskin notes the absence of any inferred gene signature to define the spa tissue

type. This may be due to misclassification in the original data set, or due to
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variation of genes and processes not included in the microarray.

(a) Hinton diagram of the gene signature expression
level for each tissue sample.

(b) Mean log posterior for each al-
gorithm variant.

Figure 15: Application to ovarian cancer data set.

For microarray studies a control measurement lt is made for each array, t, to

account for variation in the amount of solution available. Therefore we define

our observed data ydt = mdt

lt
where mdt is the experimental measurement. We

maintain our assumption of Gaussian noise in Y, although this is potentially a

poor assumption since yt is formed as the ratio of two experimental measurements.

4.5 Financial data

We now consider the application of these algorithms to stock market data. We used

historical price data from Yahoo! Finance for ten FTSE100 companies considered

to be potentially correlated:

Symbol Stock Industry

AZN Astrazeneca Pharmaceutical

GSK Glaxo Pharmaceutical

AB Alliance Boots Pharma/consumer

CW Cable & Wireless Telecoms

BT BT Group Telecoms

VOD Vodafone Telecoms

BP BP Group Energy

BG BG Group Energy

BLND Brit Land Co Reit Property

HMSO Hammerson Reit Property

LII Liberty Int Reit Property

34



We collected daily closing prices, pt, adjusted for dividends and splits, from

1st January 2002 to 29th December 2006, a total of N = 1298 samples. To make

this data stationary we transform the data under the assumption of exponential

growth:

yt = log
pt

pt−1

(89)

The raw and transformed data is shown in Appendix B. We ran each algorithm

variant for 2000 iterations and then calculated the predictive performance. This

showed iICA2 to best model the data, so we show the mean average G matrix for

this and FastICA in Figure 16.

(a) Hinton diagram of the average mixing
matrix, G, for iICA2 applied to the finan-
cial dataset.

(b) Hinton diagram of the mixing matrix
for FastICA (pow3) applied to the financial
dataset.

Figure 16: Application to financial data set.

Figure 16(a) shows the results for iICA2. The red rectangles highlight the hid-

den features which account for the correlation between stocks in the same industry.

Feature 1 is universally expressed across these stocks: this feature would probably

be found across all FTSE100 stocks, and accounts for the shared effects. Feature 6

is expressed by the two pharmaceutical companies, feature 8 by the telecoms com-

panies, feature 9 by the energy companies, and feature 5 by the property company.

These results are very satisfying: the algorithm is able to find underlying driving

forces of the various industries. An interesting further investigation would be to

compare these inferred driving forces to factors that would be expected to control
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Figure 17: Top: Half Gaussian distribution. Bottom: 20000 samples drawn from
this distribution using ARS.

a particular industry: for example the oil price for energy companies. Figure 16(b)

shows the corresponding mixing matrix inferred by FastICA(pow3). We again find

industry specific hidden features, but they are not as distinct in this case: for ex-

ample feature 6 which is primarily expressed by the pharmaceutical companies also

affects Vodafone! Therefore our sparse model may provide a more useful model for

the data.

5 Slice sampling

To test the semi-ordered stick breaking construction it is necessary first to assess the

Adaptive Rejection Samplng (ARS) algorithm I implemented following [10]. It was

necessary to develop this algorithm as the only available Matlab implementation

of ARS uses a less efficient variant which does not use the derivative of the log of

the pdf being sampled. To test this algorithm it is used to draw sampling from

a half-Gaussian, as shown in Figure 17. The agreement between the pdf and the

samples is good: the algorithm operates correctly.

The semi-ordered stick breaking algorithm has convergence problems. The num-

ber of features K tends to grow unreasonably large for the data, and even when

when the correct Z matrix is obtained it is easily disrupted by the addition of new

features. When a new feature is created, the parameters associated with it (the

36



Figure 18: The semi-ordered slice sampler fails to converge on a toy data set with
just two sources, infering a phantom 40 sources. The mixing of this MCMC method
is unsuccessful.

new rows of X and columns of G) are drawn from their priors. The Z matrix

is then sampled with these random values of X and G held fixed, which greatly

disrupts the distribution. The subsequent sampling of G and X is affected by the

disruption to Z, and the algorithm begins to diverge. In the worst case scenario

a situation is reached where features are active simply to cancel each other out:

indeed the fact that running this variant on synthetic data with just two sources

resulted in an inferred K of around 40 (see Figure 18) shows that this algorithm

does not perform correctly. To alleviate these problems I have tried changing the

order of the sampling (for example, sampling the new features once before resam-

pling old features) which has improved the performance but not entirely rectified

the issue.
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6 Conclusion

In this paper we have defined the Infinite Sparse FA and Infinite ICA models

using a distribution over the infinite binary matrix Z corresponding to the one

or two-parameter Indian Buffet Process. We have derived Markov Chain Monte

Carlo algorithms for each model variant using a combination of Gibbs sampling

and Metropolis-Hastings steps to infer the parameters given observed data. These

have been demonstrated on synthetic data, where the correct assumption about the

hidden source distribution was shown to give optimal performance, artifically mixed

audio data, where the sources were successfully recovered, gene expression data,

where the results were consistent with those using standard ICA, and financial data,

where we found improved performance over FastICA. A MATLAB implementation

of the algorithms will be made available at http://learning.eng.cam.ac.uk/zoubin/.

There are a number of directions in which this work can be extended. Although

powerful, the current algorithm is far too slow for real-time applications. Improved

simulation speech could be achieved by using more efficient Monte Carlo methods

such as Hamiltonian Monte Carlo or overrelaxation. Faster partially determinis-

tic algorithms would be useful for online learning in applications such as audio

processing. It is anticipated that the sparse nature of the model will make it ap-

propriate for large datasets. In the case of time series data the ability of model to

switch sources on or off will be valuable in applications where sources may be ac-

tive only for given periods of time, for example in blind source separation problems

such as the cocktail party problem, where people are likely to be speaking only

for certain periods. In this siutation the extension of the model to use a Hidden

Markov Model (HMM) to use the dependence between subsequent source values

could improve performance.
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A Deriving conditional distributions

A.1 Hidden sources.

We only wish to sample xkt when zkt = 1, since otherwise xkt has no influence

on the likelihood function. Since the columns of Y are generated independently

from the corresponding columns of X we can simplify P (xkt|G,X−kt,Y,Z) =

P (xkt|G,x−kt,yt, zt). Now we can use Baye’s rule: P (xkt|G,x−kt,yt, zt) ∝ P (yt|G,xt, zt, σ
2
ε )P (xkt).

We denote the k-th column of G by gk.

A.1.1 Infinite Sparse FA

We have

logP (xkt|G,x−kt,yt, zt) = −1

2
x2

kt −
1

2σ2
ε

(ε−kt − gkxkt)
T (ε−kt − gkxkt) + const

(90)

= −1

2
x2

kt −
1

2σ2
ε

(
x2

ktg
T
k gk − 2gT

k ε−ktxkt + εT
−ktε−kt

)
+ const

(91)

Comparing coefficients to the canonical form of the Gaussian we find

P (xkt|G,x−kt,yt, zt) = N
(
xkt;

gT
k ε−kt

σ2
ε + gT

k gk

,
σ2

ε

σ2
ε + gT

k gk

)
(92)

A.1.2 Infinite ICA

The Laplacian prior on xkt is P (xkt) = 1
2
exp (−|xkt|). Thus we have

logP (xkt|G,x−kt,yt, zt) = −|xkt| −
1

2σ2
ε

(ε−kt − gkxkt)
T (ε−kt − gkxkt) + const

(93)

= −|xkt| −
1

2σ2
ε

(
x2

ktg
T
k gk − 2gT

k ε−ktxkt + εT
−ktε−kt

)
+ const

(94)
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Comparing coefficients to the canonical form of the Gaussian we find the result is

a piecewise Gaussian distribution.

P (xkt|G,x−kt,yt, zt) =

{
B+

A
N (xkt;µ+, σ) xkt > 0

B−
A
N (xkt;µ−, σ) xkt < 0

(95)

where

µ+ =
gT

k ε−kt − σ2
ε

gT
k gk

(96)

µ− =
gT

k ε−kt + σ2
ε

gT
k gk

(97)

σ2 =
σ2

ε

gT
k gk

(98)

and B+ and B− are chosen such that the distribution is continuous and A such

that it is correctly normalised.

B+ = N (0;µ−;σ) (99)

B− = N (0;µ+;σ) (100)

A = A−B− + A+B+ (101)

where A− = F (0;µ−, σ) and A+ = 1−F (0;µ+, σ). To sample from this distribution

we need to calculate its cdf and then invert it. Let

u(x) =

∫ x

−∞
P (x′|G,x−kt,yt, zt)dx

′ (102)

=

{
A−B−

A
+ B+

A
(F (x;µ+, σ)− (1− A+)) xkt > 0
B−
A
F (x;µ−, σ) xkt < 0

(103)

For u > A−B−
A

we have

u = 1 +
B+

A
(F (x;µ+, σ)− 1)

⇒ x = F−1(
A

B+

(u− 1) + 1;µ+, σ) (104)
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Figure 19: Example piecewise Gaussian of Equation (102) with µ+ = −0.3, µ− =
0.5, σ = 0.3. Upper panel shows the pdf (note correct scaling to give continuity).
Lower panel shows cdf (note correct normalization). Continuous black line is the
piecewise Gaussian, dotted lines denote the component Gaussians.

For u < A−B−
A

we find

x = F−1(
A

B−
u;µ−, σ) (105)

Thus to sample x we draw u ∼Uniform(0,1): if u < A−B−
A

we calculate x us-

ing Equation 105, otherwise we use Equation 104. An example of this piecewise

Gaussian is shown in Figure 19.

A.2 Sampling G

We sample individual columns of the mixing matrix G. We denote the kth col-

umn of G by gk and the kth row of (Z ◦ X) by sk
T . The likelihood function
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Algorithm 2 Sample from piecewise Gaussian distribution of Equation 96

1: A← F (0;µ+, σ) + 1− F (0;µ−, σ)
2: u← U(0, A)
3: if u < F (0;µ+, σ) then
4: return F−1(u;µ+, σ)
5: else
6: return F−1(u+ 1− A;µ−, σ)
7: end if

P (Y|G,X,Z, σ2
ε ) has exponent − 1

2σ2
ε
×

tr(ETE) = tr((E|gk=0 − gksk
T )T (E|gk=0 − gksk

T )) (106)

= tr(skg
T
k gksk

T − 2skg
T
k E|gk=0 + const (107)

= xigjgjxi − 2xigj(E|gk=0)ji + const (108)

= (sk
T sk)(g

T
k gk)− 2gT

k E|gk=0 + constsk (109)

using summation notation.

A.3 Sampling σ2
ε

Taking the log of the total likelihood from Equation (49) gives

logP (E|σ2
ε ) = − 1

2σ2
ε

tr(ETE)− ND

2
log 2πσ2

ε (110)

Similarly taking the log of the prior on σ2
ε defined in Equation (33), we have

logP (σ2
ε |a, b) = −(a+ 1) log σ2

ε −
1

bσ2
ε

− log Γ(a)− a log b (111)
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Applying Bayes’ rule and using the prior from Equation (33) we find

P (σ2
ε |E, a, b) ∝ P (E|σ2

ε )P (σ2
ε |a, b) (112)

⇒ logP (σ2
ε |E) = logP (E|σ2

ε ) + logP (σ2
ε |a, b) (113)

= −[(a+ 1) +
ND

2
] log σ2

ε − [
1

b
+

1

2
tr(ETE)]

1

σ2
ε

+ const. (114)

⇒ P (σ2
ε |E, a, b) = IG

(
σ2

ε ; a+
ND

2
,

b

1 + b
2
tr (ETE)

)
(115)

by equating coefficients to the canonical form of the inverse Gamma distribution.

A.4 Sampling σ2
G

For sampling σ2
G the conditional prior on G acts like the likelihood since the like-

lihood itself is independent of σ2
G given G

P (σ2
G|G, c, d) ∝ P (G|σ2

G)P (σ2
G|c, d) (116)

⇒ logP (σ2
G|G, c, d) = − 1

2σ2
G

tr (GTG)− DK

2
log 2πσ2

G − (c+ 1) log σ2
G −

1

σ2
Gd

(117)

⇒ P (σ2
G|G, c, d) = IG

(
σ2

G; c+
DK

2
,

d

1 + d
2
tr (GTG)

)
(118)

A.5 Sampling α

For sampling α the conditional prior on Z, given by Equation (44), acts as the

likelihood since the likelihood itself is independent of α given Z. Taking the log of

this expression gives

logP (Z|α) = K+ logα−HN(β)α+ const. (119)
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Using the Gamma prior on α with Baye’s rule we have

P (α|G,X,Y,Z, β) = P (α|Z, β) ∝ P (Z|α, β)P (α) (120)

⇒ logP (α|Z, β) = (K+ + e− 1) logα−
(
HN(β) +

1

f

)
α+ const. (121)

⇒ P (α|Z) = G
(
α;K+ + e,

f

1 + fH(β)

)
(122)
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B Financial data

B.1 Raw data
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B.2 Transformed data
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C Main algorithm

Algorithm 3 MCMC sampler for infinite ICA

1: initialise G,X,Z using their priors
2: for r = 1 · · · number of iterations do
3: for t = 1 · · ·N do
4: for k = 1 · · ·K do
5: if mk,−t > 0 then
6: sample zkt according to Equation (56)
7: if zkt = 1 then
8: sample xkt according to Section 3.2
9: end if

10: else
11: mark zkt to be zeroed
12: end if
13: end for
14: zero marked zkt’s
15: sample κt according to Section 3.4
16: ZK+1:K+κt,t ← 1
17: initialise G:,K+1:K+κt from prior
18: for all xkt ∈ XK+1:K+κt,t do
19: sample xkt according to Section 3.2
20: end for
21: K ← K + κt

22: end for
23: for k = 1 · · ·K do
24: sample gk according to Equations (67) and (68)
25: end for
26: remove rows with mk = 0 from Z
27: remove corresponding rows from X and columns from G
28: sample σ2

ε , σ
2
G, α from Equations (115), (70), (71) respectively

29: end for
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