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Abstract

Increasingly complex and plentiful data is a modern trend. In biology

for example high throughput experimental methods such as gene ex-

pression microarray, SNP arrays and DNA sequencing are becoming

the norm. However, extracting meaningful, interpretable knowledge

and understanding from these data sources remains a challenge. In

this thesis we contribute two Bayesian nonparametric models for dis-

covering latent structure in data. The first, a non-parametric, sparse

extension of factor analysis, explains observed data as a sparse super-

position of an unbounded number of latent processes. The structure

discovered is a bipartite graph connecting observed and latent vari-

ables. The second model, the Pitman Yor diffusion tree, is able to

learn a latent hierarchy where the leaves of the tree correspond to ob-

served entities. Unlike its predecessor, the Dirichlet diffusion tree, the

model has support for arbitrary branching structure rather than just

binary branching, allowing more interpretable solutions to be found.

Rich, expressive models are clearly desirable, but to be useful we

must be able to handle them computationally and learn parameters

in a reasonable amount of time. Efficient approximate message pass-

ing and variational methods are reviewed, and a new algorithm is pro-

posed which extends a particular method, variational message passing

(VMP), to a much greater range of probabilistic models. We apply

this method, which we call non-conjugate VMP, to multinomial lo-

gistic regression and heteroskedastic regression. Finally we show how

message passing methods can be used as part of an efficient greedy

algorithm to find optimal tree structures under the Pitman Yor diffu-

sion tree introduced previously.
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Chapter 1

Introduction

Statistical inference in principle is simple. Write down your probabilistic model

of the world, condition on all available observations and Bayes rule tells you

what your belief about the state of all unknowns should be. In reality of course

there are many obstacles to this approach: how can we ever hope to formalise our

intuition about the world as a well defined mathematical model? Even if we knew

the model, could we handle it computationally? Thus we settle for compromises:

choose a simple model which we can understand, and which is tractable using

modern computer algorithms and hardware. But we should not forget that this

compromise has been made, and that progress is made if we can move a little

closer to modeling the complexity of the real world.

Much work in machine learning and statistics can be viewed as attempting to

do this. More flexible, expressive models, with complex latent structure, can bet-

ter approximate our complex world and better incorporate rich prior knowledge.

One such class of models use Bayesian non-parametric priors [Orbanz & Teh,

2010; Teh & Jordan, 2009]. While flexible, adaptive models are clearly desirable

in principle, they are of little practical use unless we are able to handle them

computationally. The work in this thesis contributes to both these threads: in-

troducing new non-parametric models and developing methodology to make such

complex models tractable.

This thesis describes two novel Bayesian non-parametric models. The first,

in Chapter 3, is a factor analysis model, where observed data are explained as

sparse linear combinations of latent continuous-valued processes or “factors”. In
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contrast to previous approaches to this problem, the model is naturally able to

adapt the number of latent factors used to best explain the observed data. The

second, in Chapter 4, is a Bayesian non-parametric prior over hierarchies with

arbitrary branching structure. We show this process has attractive properties for

modelling, and can be used to learn interpretable hierarchies over objects.

Chapter 5 reviews message passing techniques. Contributing to the line of

work expanding the range of models amenable to statistical inference, Chapter 6

introduce a novel message passing algorithm which significantly extends the class

of models that can be learnt using a particular method, known as variational

message passing.

Chapter 7 combines these lines of research, demonstrating a message pass-

ing inference algorithm for models based on the prior over trees introduced in

Chapter 4.

To demonstrate the practical value of these methods we apply them to various

real world datasets, particularly focusing on problems in computational biology.

We show that our non-parametric sparse factor analysis provides an excellent sta-

tistical model of the variation typical in gene expression data, while also finding

interpretable latent structure. The message passing techniques partially devel-

oped here and implemented in Infer.NET [Minka et al., 2010] allow us to easily

model rich phenotypic data [Knowles et al., 2010, 2011b].

1.1 Bayesian non-parametrics

Statistical models typically have “parameters”: variables which can be thought as

indexing the available models within a particular class. In the Bayesian approach,

parameters are themselves viewed as random variables which should therefore

have some prior distribution. The model specifies a distribution over observed

data which is conditional on these parameters. Traditional models have a fixed,

finite number of parameters, and are known as “parametric models”. A Gaus-

sian distribution with unknown mean and variance is perhaps the most canonical

example. However, this is quite a strong restriction: if the data does not really

come from a Gaussian, even in the limit of infinite data we cannot recover the

true density. Instead of a single Gaussian we could use a mixture of Gaussians

2



for example. The more mixture components the more flexible our model will

be, which might suggest choosing a large number of mixture components. Tra-

ditional statistics might discourage this idea because of the worry of overfitting:

there might be “insufficient” data to get good estimates of the many parameters

in the model. However, if we are able to perform full Bayesian inference, then

we are protected from overfitting because any parameters that are not needed

to explain the observed data are effectively marginalised out. The logical limit

of this idea is to use a model with (countably or uncountably) infinitely many

parameters, for example using a mixture model with a countably infinite number

of components. With suitably structured models we find that when perform-

ing inference we only need represent a finite number of parameters, since all

but finitely many parameters do not effect the data. One such model with this

property in the class of infinite mixture models is the Dirichlet process mixture

model [Antoniak, 1974; Escobar & West, 1995; Rasmussen, 2000]. The model

we introduce in Chapter 4 can be seen as a generalisation of a Dirichlet process

mixture model which incorporates additional latent structure while maintaining

desirable statistical properties, in particular exchangeability and projectivity.

Exchangeable sequences. A sequence of random variables X1, · · · , Xn is said

to be exchangeable if the joint distribution is invariant to permutations, i.e.

P(X1, · · · , Xn) = P(Xσ(1), · · · , Xσ(n)) for all finite permutations σ. When we

have a infinite sequence of random variables X1, X2, · · · we are usually interested

in whether the sequence is infinitely exchangeable, i.e. is invariant to permuta-

tions of any finite subsequence. Intuitively exchangeability corresponds to the

assumption that the order of the data points does not matter. Exchangeability

is not only a key modelling assumption, but also a valuable property allowing

considerably simpler analysis and inference. For example, a common way to per-

form Markov chain Monte Carlo sampling in an exchangeable model is to consider

the current data point to be the final point sampled in the generative process,

which is possible because of exchangeability. This simplifies the update because

we do not need to consider the effect of the state of the current data point on the

probability of subsequent dat points.

3



De Finetti’s Theorem. Through de Finetti’s theorem [De Finetti, 1931] the

idea of exchangeability provides strong motivation for hierarchical probabilistic

models. The theorem states the distribution of any infinitely exchangeable se-

quence X1, X2, ... can be represented as

P(X1, X2, X3, ...) =

∫ ∏
i

θ(Xi)dν(θ), (1.1)

where θ is a probability measure and ν is known as the de Finetti measure, which

we associate with a prior in Bayesian modelling.

Projectivity. Consider the family of models {Pn : n = 1, 2, ...}, where Pn is

the model (joint distribution) for n data points. If the joint distribution over

n−1 data points is given by marginalising out the n-th data point from the joint

distribution over n data points, i.e.

Pn−1(X1, · · · , Xn−1) =

∫
Pn(X1, · · · , Xn−1, Xn)dXn, (1.2)

then the family of models is said to be projective. This property satisfies two

desiderata: firstly that knowing extra unobserved data points exist does not

affect our prior over the observed data points, and secondly that the model can

be consistently extended to new data, for example in a training/test split.

Most of the models used in the Bayesian non-parametrics literature demon-

strate exchangeability and projectivity. When the assumption of exchangeability

is undesirable it is often straightforward to extend such models, for example al-

lowing Markov [Beal et al., 2002] or tree structured [Miller et al., 2008; Rai &

Daumé III, 2008] dependencies.

1.2 Message passing algorithms

While Markov chain Monte Carlo [Neal, 1993] methods continue to be the stan-

dard tool for performing inference in probabilistic models, a different class of

algorithms has been developing, perhaps described best as “deterministic meth-

ods” to contrast the stochastic nature of MCMC. These methods generally specify

4



a functional form of an approximate posterior distribution, and then attempt to

make this approximation “close” to the true posterior in some way. We will focus

in particular on a subset of deterministic methods which can be described using

a message passing formalism.

The canonical message passing algorithm is belief propagation (BP), intro-

duced in Pearl [1982], making exact inference tractable in large tree structured

Bayesian networks. For cyclic graphs exact inference can be performed using

the junction tree algorithm [Jensen et al., 1994; Lauritzen & Spiegelhalter, 1988],

which collapses cliques in the graph to give a tree structure. Unfortunately this

method has computational cost exponential in the size of the largest clique. A

solution originally proposed as a heuristic is to simply iterate standard BP on

cyclic graphs, an algorithm known as “loopy BP” [Frey & MacKay, 1998; Gal-

lager, 1963]. Loopy BP was found to have excellent empirical performance on

certain decoding problems [Berrou et al., 1993], and is now understood to have

fixed points at stationary points of the Bethe free energy [Yedidia et al., 2003], an

approximation of the correct Gibbs free energy. Although BP is of great use for

inference in discrete and Gaussian Bayesian networks (and many undirected mod-

els) it is not generally feasible for more complex models including non-linearity,

non-conjugacy, and mixed discrete and continuous latent variables. Expectation

propagation [Minka, 2001b] generalises BP to handle many of these situations by

“projecting” the complex distributions BP would require sending onto simpler

exponential family distributions which are “close” in terms of KL divergence.

Another group of deterministic methods are known as variational methods.

Variational Bayes [Attias, 2000; Beal & Ghahramani, 2006] for example con-

structs and optimises a lower bound on the marginal likelihood of the model,

which can be interpreted as minimising the KL divergence between the true and

approximate posterior. The variational Bayes (VB) updates can be represented

as local message passing on the factor graph, an implementation known as vari-

ational message passing [Winn & Bishop, 2006]. Variational message passing

(VMP) and expectation propagation (EP) can be seen to be specific instances of

a more general message passing algorithm based on α-divergences [Minka, 2005].

Chapter 5 provides a practical review of these methods.

There are many discussions of the relative merits of MCMC and determin-
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istic methods for specific models [Blei & Jordan, 2006; Mohamed et al., 2011;

Nickisch & Rasmussen, 2008; Rattray et al., 2009; Turner et al., 2008] and some

more general reviews [Ghahramani, 2006], but for completeness we summarise

some of the key factors here. A primary motivation of MCMC is that under mild

and easily verifiable conditions the sampler will eventually sample from the true

equilibrium distribution. This is a valuable guarantee, and has practical implica-

tions as well: if I need more accuracy, I can simply try running my sampler for

longer. Deterministic methods offer no such promise that even with infinite com-

putational resource they will be able to get close to the true posterior. However

in practice, MCMC’s guarantees are often vacuous. It may take an exponen-

tially long time to explore the posterior, and moving from one mode to another

may be almost impossible. The mixing time of the chain may be poor even if a

reasonable mode can be found. Worse still, even assessing whether an MCMC al-

gorithm has converged is an art all to itself [Cowles & Carlin, 1996]. By contrast,

assessing whether a deterministic method has converged is very straightforward.

The different representations of the posterior are significant from a user’s point

of view: while deterministic methods give an easy to handle parametric form,

MCMC gives a set of posterior samples which must be stored, manipulated and

summarised somehow. Comparing these methods computationally is very diffi-

cult: what is the model? what is the scale of the dataset? are we memory or CPU

bound? can we parallelise? what error tolerance is acceptable? The answers to

all these questions will affect the choice of algorithm. For example, in mixture

models when sampling a particular component parameter we need only look at

the points currently assigned to that component. In contrast, since standard vari-

ational methods will never put exactly zero probability on assigning a point to a

cluster, we must consider all points when updating a single component parameter.

While deterministic methods have been found to be faster than MCMC methods

for certain models, their memory overhead is typically higher because of having

to store messages. Some considerations are specific to a particular algorithm. EP

can fail to converge, either entering a limit cycle or having parameters diverge,

behaviour that is guaranteed not to occur for MCMC or VB. An attraction of

VB is ease of “debugging”: since every update should increase (or at least not

decrease) the lower bound any erroneous updates can easily be detected.
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Our contribution to this field is Non-conjugate Variational Message Passing,

an extension of VMP that allows factors of almost arbitrary form. NCVMP has

been incorporated into the free probabilistic programming language Infer.NET [Minka

et al., 2010], allowing practitioners to use a broader range of models than before.

If a user requests VMP inference in a model with factors that can be handled

by NCVMP but not by VMP, then NCVMP will be invoked automatically. In-

fer.NET allows the specification of complex and structured models without the

burden of hand derived inference routines. This is another way of moving towards

representing the complex nature of real world data.
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Chapter 2

Factor analysis models

Principal components analysis (PCA), factor analysis (FA) and independent com-

ponents analysis (ICA) are bilinear models which explain observed data, yn ∈ RD,

in terms of a linear superposition of independent hidden factors, xn ∈ RK . We

will focus on the application of such methods to gene expression modelling, where

we envisage the hidden factors will correspond to underlying biological processes

or confounding experimental factors. A microarray typically might have 10,000

probes (the unique sequences of complementary RNA that bind to messenger

RNA), making analysing this data a very high dimensional problem. Moreover,

the number of available samples is typically relatively small, on the order of hun-

dreds rather than thousands, which introduces further challenges statistically.

The number of probes is D, the number of samples is N and the number

of underlying gene signatures (latent factors) is K. The bilinear model we will

consider is:

yn = Gxn + εn, (2.1)

where G is the factor loading matrix and εn is a noise vector, usually assumed

to be Gaussian. Factor analysis and principal components analysis have become

fundamental data analysis tools, used in data compression, image processing,

ecology, genetics, portfolio management, and even time series data.
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2.1 Principal components analysis

PCA is commonly derived in two complimentary fashions. The first, described

in Hotelling [1933], is as the normalised linear projection which maximises the

the variance in the projected space. Consider N vectors yn with dimension D

and sample mean ȳ. The projection into the principal components space is xn =

GT (yn − ȳ), where xn is the K-dimensional vector of principal components,

and G is D × K. The rows wj of G are constrained to have unit length so

that the problem is well defined. It can be shown that maximising the variance

|∑n xnx
T
n/N | (where | · | denotes the determinant) is equivalent to setting the

rows wj of G equal to the eigenvectors of the sample covariance matrix S =∑
n(yn − ȳ)(yn − ȳ)T/N with the largest eigenvalues. The second derivation,

dating back to Pearson [1901], is as the orthogonal projection which minimises

the squared reconstruction error
∑ ||yn − ŷn||2 where ŷn = Gxn + ȳ.

Tipping & Bishop [1999] and Roweis [1998] simultaneously noted the inter-

pretation of Principal Components Analysis as maximum likelihood estimation

in an appropriate probabilistic model. In both PCA and FA the latent factors

are given a standard (zero mean, unit variance) normal prior. The only difference

is that in PCA the noise is isotropic, whereas in FA the noise covariance is only

constrained to be diagonal.

2.2 Factor analysis

Factor analysis (FA) was originally developed by the psychology community at-

tempting to understand intelligence in terms of a small number of underlying

“factors” [Young, 1941]. In Young’s formulation, the xn are viewed as param-

eters to be estimated. More recently, the convention has been to consider xn

as latent variables which can be given a prior and marginalised out. The latent

factors are usually considered as random variables, and the mixing matrix as a

parameter to estimate.
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2.3 Inferring the latent dimensionality

Bishop [1999] extends the probabilistic PCA formulation of Tipping & Bishop

[1999] to allow implicit inference of the latent dimensionality. Rather than

performing a discrete model search, which could be performed for example by

Bayesian model selection, Bishop uses the Automatic Relevance Determination

(ARD) framework introduced by Mackay and Neal for complexity control in neu-

ral networks [MacKay, 1994]. Each column gk of G is given a prior distribution

N(0, α−1
k I). Thus αk is the precision (inverse variance) of gk. If αk is inferred

to be large, then gk is forced towards zero, effectively suppressing this dimen-

sion. In the original ARD framework proposed by MacKay, Type-II maximum

likelihood estimation of the α’s is performed based on a Laplace approximation

to a mode of the posterior of G. Bishop follows this framework but also suggests

Gibbs sampling or variational Bayes as alternative strategies to approximately

marginalise out G.

Minka [2000] shows that for probabilistic PCA, Bayesian model selection can

be performed efficiently using a Laplace approximation. Laplace approximation

involves fitting a Gaussian distribution to the posterior mode by matching the

Hessian matrix of the log likelihood. Laplace’s method is more accurate if a

parameterisation can be found where the Gaussian approximation to the posterior

is more reasonable. The noise variance σ2 is a positive scalar. However, its

logarithm, log σ2 can take any real value and it is therefore more reasonable to

approximate the posterior as Gaussian. Minka uses an improper uniform prior

on m, the latent mean. The mixing matrix G is decomposed as

U(L− σ2Ik)
1/2R

where U is an orthogonal basis (i.e. UTU = I), L is a diagonal scaling matrix

with positive diagonal elements li, and R is an arbitrary and irrelevant rotation

matrix. The condition UTU = I restricts U to a subspace known as the Stiefel

manifold, which has a finite area given by an analytic expression. The matrix U

can therefore be given a uniform prior distribution on the Stiefel manifold, with

normalised density of one over the area. Parameterising the manifold in Euler
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vector co-ordinates also makes Laplace’s method more accurate. The fact that

any column of U can be negated without changing the model means that there

are 2k identical modes in the posterior. To account for these the result from

Laplace’s method is simply multiplied by 2k.

2.4 Sparsity

Sparsity is the idea that only some small proportion of coefficients should be

non-zero. There are three main motivations for “sparse” models:

1. Interpretability. Having fewer active links in a model makes it easier to

interpret.

2. Reflects reality. Many real-world systems are sparse. In genetics, tran-

scription factors only bind to specific motifs, and therefore only regulate a

small set of genes. In social networks, individuals only interact with a small

number of friends relative to the total population. In finance, a company’s

performance is driven by only a few key factors. Incorporating this prior

expectation of sparsity into a model is therefore often very natural.

3. Improved predictive performance. Sparsity helps prevent overfitting because

coefficients that would be non-zero only because of noise in the data are

forced to zero.

There are two main types of sparse model, which we refer to as “hard” and

“soft”. Hard sparsity means that coefficients have finite mass on zero, the main

example being the so-called “slab-and-spike” prior, a mixture between a continu-

ous distribution and a delta-spike at 0 [Ishwaran & Rao, 2003, 2005]. Soft sparsity

means that the coefficient priors have heavy tails, and so a priori are likely to have

either very small (but non-zero) or large values. Examples include the Laplace

distribution corresponding to LASSO regression [Tibshirani, 1994], the student-t

distribution [Geweke, 1993], or the Horseshoe prior [Carvalho et al., 2009]. The

student-t distribution can be efficiently modeled as a scale mixture of Gaussians

by giving the inverse variance (precision) parameter a Gamma prior. Figure 2.1

shows the density of two independent student-t variables with degrees of freedom
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Figure 2.1: The density of two independent Student-t variables with 0.05 degrees
of freedom.

a = 0.05. The mass is concentrated on the axes where one of the components is

close to 0.

Another definition of hard vs. soft sparsity would be to consider whether the

algorithm output can have coefficients that are exactly zero. Bayesian inference

will generally not give this result, because the posterior given data will specify a

probability of a coefficient being non-zero. Maximum likelihood or maximum a

posterior (MAP) estimation however may give zero coefficients for certain types

of prior (regularisation).

The student-t distribution is given by

T (x; a, b) ∝
[
1 +

1

a
(x/b)2

]−a+1
2

. (2.2)
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This is achieved as a scale mixture by setting:

λ ∼ G

(
λ;
a

2
,

2

ab2

)
(2.3)

x|λ ∼ N(x; 0, λ−1). (2.4)

The horseshoe prior is another scale mixture of normal prior which has recently

been proposed [Carvalho et al., 2009] which also admits a conjugate hierarchical

representation [Armagan et al., 2011]. The normal, Laplace, Cauchy, and horse-

shoe priors are shown in Figure 2.2. The tail of the normal prior falls off most

sharply, as e−x
2
, which will result in the greatest bias for large coefficients. Next

is the Laplace prior, where the tails decay as e−|x|. The Cauchy and horseshoe

priors both have tails which fall off as 1/x2. This slow decay results in reduced

bias.
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Figure 2.2: Comparing the normal, Laplace, Cauchy and horseshoe priors.

2.5 Sparse factor analysis

The idea of using a student-t prior, decomposed as a scale mixture of normal,

in factor analysis, seems to have been simultaneously proposed in Fokoue [2004]
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and Fevotte & Godsill [2006]. The elements of the mixing matrix G are given a

student-t prior, and efficient inference is performed by introducing a per element

precision as in Equation 2.3. Fokoue [2004] and Fevotte & Godsill [2006] perform

Gibbs sampling to perform posterior inference in this model, whereas Cemgil

et al. [2005] use variational EM [Ghahramani & Beal, 2001; Wainwright & Jordan,

2003].

The Bayesian Factor Regression Model (BFRM) of West et al. [2007] is closely

related to the finite version of the model we will describe in the next chapter.

The key difference is the use of a hierarchical sparsity prior. In both our model

and BFRM each element of the mixing matrix G has a prior of the form

gdk ∼ (1− πdk)δ0(gdk) + πdkN
(
gdk; 0, λ−1

k

)
. (2.5)

In order to avoid requiring overly aggresive sparsifying priors, BFRM uses a

hierarchical sparsity prior:

πdk ∼ (1− ρk)δ0(πdk) + ρkBeta(πdk; am, a(1−m)) (2.6)

where ρk ∼ Beta(sr, s(1 − r)). Non-zero elements of πdk are given a diffuse

prior favouring larger probabilities (a = 10,m = 0.75 are suggested in West et al.

[2007]), and ρk is given a prior which strongly favours small values, corresponding

to a sparse solution (e.g. s = D, r = 5
D

). Note that on integrating out πdk, the

prior on gdk is

gdk ∼ (1−mρk)δ0(gdk) +mρkN
(
gdk; 0, λ−1

k

)
(2.7)

The LASSO-based Sparse PCA (SPCA) method of Zou et al. [2006] and Wit-

ten et al. [2009] has similar aims to our work in terms of providing a sparse

variant of PCA to aid interpretation of the results. However, since SPCA is

not formulated as a generative model it is not necessarily clear how to choose the

regularization parameters or dimensionality without resorting to cross-validation.

In our experimental comparison to SPCA we adjust the regularization constants

such that each component explains roughly the same proportion of the total vari-

ance as the corresponding standard (non-sparse) principal component.
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In Mohamed et al. [2011] sparse factor analysis is generalised to the general

exponential family case, analogously to generalised linear models (GLMs) for re-

gression. They show, on various real world datasets, that for Gaussian, binary

and Poisson observations, spike-and-slab priors give greater predictive perfor-

mance than using Laplace priors or L1 regularisation.

2.6 The Indian buffet process

The model presented in Chapter 3 will be based on the Indian buffet process

(IBP). The IBP defines a distribution over infinite binary matrices, which can

be used to construct latent feature models where the number of features is un-

bounded a priori. Models constructed using the IBP are sparse in that only a

small number of features are typically active for each entity. The Indian Process

Process (IBP) was originally introduced by Griffiths & Ghahramani [2005] and

is reviewed in Griffiths & Ghahramani [2011]. Two and three parameter gener-

alisations are developed in Ghahramani et al. [2007] and Teh & Görür [2009], a

stick-breaking construction is presented in Teh et al. [2007], and the beta pro-

cess [Hjort, 1990] is shown to be the de Finetti measure for the IBP in Thibaux

& Jordan [2007].

2.6.1 Start with a finite model.

We derive the distribution on an infinite binary matrix Z by first defining a finite

model with K features and taking the limit as K → ∞. We then show how the

infinite case corresponds to a simple stochastic process.

We have D dimensions and K hidden sources. Element Zdk of matrix Z tells

us whether the hidden factor k contributes to dimension d. We assume that the

probability of factor k contributing to any dimension is πk, and that the rows are

generated independently. We find

P (Z|π) =
K∏
k=1

D∏
d=1

P (zdk|πk) =
K∏
k=1

πmkk (1− πk)D−mk (2.8)

where mk =
∑D

d=1 zdk is the number of dimensions to which source k contributes.
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The inner term of the product is a binomial distribution, so we choose the con-

jugate Beta(r, s) distribution for πk. For now we take r = α
K

and s = 1, where α

is the strength parameter of the IBP. The model is defined by

πk|α ∼ Beta
( α
K
, 1
)

(2.9)

zdk|πk ∼ Bernoulli(πk) (2.10)

Due to the conjugacy between the binomial and beta distributions we are able to

integrate out π to find

P (Z) =
K∏
k=1

α
K

Γ(mk + α
K

)Γ(D −mk + 1)

Γ(D + 1 + α
K

)
(2.11)

where Γ(.) is the Gamma function.

2.6.2 Take the infinite limit.

Griffiths & Ghahramani [2005] define a scheme to order the non-zero rows of Z

which allows us to take the limit K →∞ and find

P (Z) =
αK+∏
h>0Kh!

exp (−αHD)

K+∏
k=1

(D −mk)!(mk − 1)!

D!
, (2.12)

where K+ is the number of active features (i.e. non-zero columns of Z), HD :=∑D
j=1

1
j

is the D-th harmonic number, and Kh is the number of rows whose entries

correspond to the binary number h1.

2.6.3 Go to an Indian buffet.

This distribution corresponds to a simple stochastic process, the Indian Buffet

Process. Consider a buffet with a seemingly infinite number of dishes (hidden

sources) arranged in a line. The first customer (observed dimension) starts at

the left and samples Poisson(α) dishes. The ith customer moves from left to

right sampling dishes with probability mk
i

where mk is the number of customers

1Equation 2.12 is actually the probability of an equivalence class of Z’s
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to have previously sampled dish k. Having reached the end of the previously

sampled dishes, he tries Poisson(α
i
) new dishes. Figure 2.3 shows two draws from

the IBP for two different values of α.
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(b) α = 8

Figure 2.3: Draws from the one parameter IBP for two different values of α.

If we apply the same ordering scheme to the matrix generated by this process

as for the finite model, we recover the correct distribution over equivalance classes

of matrices, which is exchangeable with respect to the customers. Since the

distribution is exchangeable with respect to the customers we find by considering

the last customer that

P (zkt = 1|z−kn) =
mk,−t

D
(2.13)

where mk,−t =
∑

s 6=t zks, which is used in sampling Z. By exchangeability and

considering the first customer, the number of active sources per dimension follows

a Poisson(α) distribution, and the expected number of entries in Z is Dα. We also

see that the number of active features, K+ =
∑D

d=1 Poisson(α
d
) = Poisson(αHD).

In the next chapter we will use the Indian Buffet Process to construct a factor

analysis model that naturally incorporates sparsity and learns the appropriate

number of latent factors to use for a specific dataset.
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Chapter 3

Non-parametric sparse factor

analysis

The work in this chapter was published in Knowles & Ghahramani [2011a]. In our

earlier work [Knowles & Ghahramani, 2007] we investigated the use of sparsity

on the latent factors xn, but this formulation is not appropriate in the case of

modelling gene expression, where a transcription factor will regulate only a small

set of genes, corresponding to sparsity in the factor loadings, G. Here we propose

a novel approach to sparse latent factor modelling where we place sparse priors

on the factor loading matrix, G. The Bayesian Factor Regression Model of West

et al. [2007] is closely related to our work in this way, although the hierarchical

sparsity prior they use is somewhat different, see Section 2.5. An alternative

“soft” approach to incorporating sparsity is to put a Gamma(a, b) (usually ex-

ponential, i.e. a = 1) prior on the precision of each element of G independently,

resulting in the elements of G being marginally student-t distributed a priori: see

Section 2.4 for more details. We compare these three sparsity schemes empirically

in the context of gene expression modelling.

We use the Indian Buffet Process [Griffiths & Ghahramani, 2005], reviewed in

Section 2.6, which defines a distribution over infinite binary matrices, to provide

sparsity and a framework for inferring the appropriate latent dimension for the

dataset using a straightforward Gibbs sampling algorithm. The Indian Buffet

Process (IBP) allows a potentially unbounded number of latent factors, so we
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do not have to specify a maximum number of latent dimensions a priori. We

denote our model “NSFA” for “non-parametric sparse Factor Analysis”. Our

model is closely related to that of Rai & Daumé III [2008], and is a simultaneous

development.

3.1 Model

As in the previous chapter we will consider the bilinear model for the observed

data yn:

yn = Gxn + εn, (3.1)

where G is the factor loading matrix and εn is a noise vector. Let Z be a binary

matrix whose (d, k)-th element represents whether observed dimension d includes

any contribution from factor k. We then model the factor loading matrix by

p(Gdk|Zdk, λk) = ZdkN
(
Gdk; 0, λ−1

k

)
+ (1− Zdk)δ0(Gdk) (3.2)

where λk is the inverse variance (precision) of the kth factor and δ0 is a delta

function (point-mass) at 0. Distributions of this type are sometimes known as

“spike and slab” distributions. We allow a potentially infinite number of hidden

sources, so that Z has infinitely many columns, although only a finite number

will have non-zero entries. This construction allows us to use the IBP to provide

sparsity and define a generative process for the number of latent factors.

We will now describe the modelling choices available for the rest of the model.

We assume independent Gaussian noise, εn, with diagonal covariance matrix, Ψ.

We find that for many applications assuming isotropic noise is too restrictive, but

this option is available for situations where there is strong prior belief that all

observed dimensions should have the same noise variance. The latent factors, xn,

are given Gaussian priors. The graphical model is shown in Figure 3.1.
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Figure 3.1: Graphical model for Non-parametric Sparse Factor Analysis

3.2 Inference

Given the observed data Y, we wish to infer the hidden factors X, which factors

are active for each observed dimension Z, the factor loading matrix G, and all

hyperparameters. We use Gibbs sampling, but with Metropolis-Hastings (MH)

steps for sampling new features. We draw samples from the posterior distribution

of the model parameters given the data by successively sampling the conditional

distributions of each parameter in turn, given all other parameters.

Since we assume independent Gaussian noise, the likelihood function is

P (Y|G,X,ψ) =
N∏
n=1

1

(2π)
D
2 |ψ| 12

exp

(
−1

2
(yn −Gxn)Tψ−1(yn −Gxn)

)
(3.3)

where ψ is a diagonal noise precision matrix.

Mixture coefficients. Z is a matrix with infinitely many columns, but only the

non-zero columns contribute to the likelihood and are held in memory. However,

the zero columns still need to be taken into account since the number of active
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factors can change. This can be done by Gibbs sampling the non-zero columns and

performing a Metropolis-Hastings move on the number, κd, of “singleton” features

for each row d in turn. Thus κd is the number of columns of Z which contain 1

only in row d, i.e. the number of features which are active only for dimension

d. Figure 3.2 illustrates κd for a sample Z matrix. Let m−d,k =
∑

c6=d Zdk be the

number of rows for which feature k is active, excluding the current row d.

ge
n
es

(c
u
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er
s)

κd

factors (dishes)

Figure 3.2: A diagram to illustrate the definition of κd, for d = 10.

It was pointed out in Griffiths & Ghahramani [2011] that it is invalid to simply

Gibbs sample the singleton features so that κd = 0 as a result of Equation 3.6,

as is done in various references [Doshi-Velez & Ghahramani, 2009a; Knowles

& Ghahramani, 2007], because this corresponds to choosing the Markov chain

kernel depending on the current state of the variable being sampled. Specifically

for columns of Z where m−d,k = 0, this method Gibbs samples Zdk if Zdk = 1

(thereby setting Zdk = 0 deterministically) and samples it as part of a MH step

if Zdk = 0. However, there is a simple solution: we are allowed to choose the

MC kernel depending on the state of variables that are currently fixed, since
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the transition kernel for the variables currently being sampled will still maintain

detailed balance. We will Gibbs sample Zd: for columns where m−d,k > 0, and use

an MH step to sample how many of the infinitely many remaining elements where

m−d,k = 0 should be on. Thus the choice of kernel depends only on the state of

other rows of Z than the row currently being sampled. We will show empirically

in Section 3.2.1 that while the method proposed here does sample from the correct

equilibrium distribution, deleting all singleton features before adding new ones

does not, and systematically underestimates the number of latent features. This

correct method is in fact proposed in Meeds et al. [2006], although they do not

point this out.

Thus for row d we Gibbs sample the elements Zdk for which m−d,k > 0.

Integrating out the Gaussian “slab” for the (d, k)-th element of the factor loading

matrix, gdk, in Equation 3.2 we obtain

P (Y|Zdk = 1,−)

P (Y|Zdk = 0,−)
=

∫
P (Y|gdk,−)N

(
gdk; 0, λ−1

k

)
dgdk

P (Y|gdk = 0,−)
(3.4)

=

√
λk
λ

exp

(
1

2
λµ2

)
(3.5)

where − denotes the current state of the chain excluding those variables explicitly

mentionned, λ = ψ−1
d XT

k:Xk: +λk and µ =
ψ−1
d

λ
XT
k:Êd: with the matrix of residuals

Ê = Y − GX evaluated with Gdk = 0. The dominant calculation is that for

µ since the calculation for λ can be cached. This operation is O(N) and must

be calculated D × K times, so sampling the IBP matrix, Z and factor loading

matrix, G is order O(NDK).

From the exchangeability of the IBP we see that the ratio of the priors is

P (Zdk = 1|−)

P (Zdk = 0|−)
=

m−d,k
D − 1−m−d,k

(3.6)

Multiplying Equations 3.5 and 3.6 gives the expression for the ratio of posterior

probabilities for Zdk being 1 or 0, which is used for sampling. If Zdk is set to 1,

we sample gdk|− ∼ N (µ, λ−1) with µ, λ defined as for Equation 3.5.
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Adding new features. New features are proposed by sampling the number of

singleton features for row d, denoted κd, with a MH step, where the proposed

new value is κ∗d. It is straightforward to integrate out either the new elements

of the mixing matrix, g∗ (a 1× κ∗d vector), or the new rows of the latent feature

matrix, X∗ (a κ∗d × N matrix), but not both. Since the latter is likely to have

higher dimension, we choose to integrate out X∗ and include g∗ as part of the

proposal. Thus the proposal is ξ∗ = {κ∗d,g∗}, and we propose a move ξ → ξ∗

with probability J(ξ∗|ξ). Our proposal will be of the form

J(ξ∗|ξ) = J(κ∗d)J(g∗). (3.7)

The simplest proposal, following Meeds et al. [2006], would be to use the prior

on ξ∗, i.e.

J(κ∗d) = P (κ∗d|α) = Poisson (κ∗d; γ) , (3.8)

J(g∗) = p(g∗|κ∗d, λk) = N(g∗; 0, λ−1
k ), (3.9)

where γ = α
D

.

Unfortunately, the rate constant of the Poisson prior tends to be so small that

new features are very rarely proposed, resulting in slow mixing. To remedy this

we modify the proposal distribution for κ∗d and introduce two tunable parameters,

π and λ.

J(κ∗d) = (1− π)Poisson (κ∗d;λγ) + π1(κ∗d = 1) (3.10)

Thus the Poisson rate is multiplied by a factor λ, and a spike at κ∗d = 1 is added

with mass π.

The proposal is accepted with probability min (1, aξ→ξ∗) where

aξ→ξ∗ =
P (ξ∗|rest, Y )J(ξ|ξ∗)
P (ξ|rest, Y )J(ξ∗|ξ) =

P (Y |ξ∗, rest)P (κ∗d|α)J(κd)

P (Y |ξ, rest)J(κ∗d)P (κd|α)
= al · ap, (3.11)

where

al =
P (Y |ξ∗, rest)

P (Y |ξ, rest)
, ap =

P (κ∗d|α)J(κd)

J(κ∗d)P (κd|α)
. (3.12)
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To calculate al we need the collapsed likelihood under the new proposal:

P (Yd:|ξ∗,−) =
N∏
n=1

∫
P (Ydn|ξ∗,x′n,−)P (x′n)dx′

=
N∏
n=1

1

(2πψ−1
d )

1
2 |M∗| 12

exp

(
1

2
(m∗Tn Mm∗n − ψ−1

d Ê2
dn)

)
(3.13)

where M∗ = ψ−1
d g∗g∗T + Iκd and m∗n = M∗−1ψ−1

d g∗Êdn where the residuals Êdn

are with all singletons for row d switched off, ie. Êdn = Ydn−
∑

k:m−d,k>0GdkXkn.

Note that Yd: denotes taking a “slice” of a matrix, in this case the d-th row.

Equivalently, the collapsed likelihood for ξ, the current set of singletons for row

d is

P (Yd:|ξ,−) =
N∏
n=1

1

(2πψ−1
d )

1
2 |M| 12

exp

(
1

2
(mT

nMmn − ψ−1
d Ê2

dn)

)
(3.14)

where M = ψ−1
d ggT + Iκd and mn = M−1ψ−1

d gÊdn with g = {Gdk : m−d,k = 0}
the current values of G for the singletons of row d. Note that while it might

be tempting to calculate P (Yd:|ξ,−) conditioning on the current factor values for

the existing singletons {Xk: : m−d,k = 0}, this is incorrect since the numerator

and denominator in the MH acceptance ratio are then calculated with different

parts of the model collapsed. Substituting the likelihood terms in Equations 3.14

and 3.13 into the Equation 3.12 for the ratio of likelihood terms, al, gives

al =
|M∗|−N2 exp

(
1
2

∑
n m∗Tn M∗m∗n

)
|M|−N2 exp

(
1
2

∑
n mT

nMmn

) (3.15)

We found that appropriate scheduling of the sampler improved mixing, par-

ticularly with respect to adding new features. The final scheme we settled on is

described in Algorithm 1.

IBP hyperparameter. We can choose to sample the IBP strength parameter

α, with conjugate Gamma(aα, bα) prior (note that we use the inverse scale param-

eterisation of the Gamma distribution). The conditional prior of Equation (2.12),
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acts as the likelihood term and the posterior update is as follows:

P (α|Z) ∝ P (Z|α)P (α) = Gamma (α;K+ + aα, bα +HD) (3.16)

where K+ is the number of active sources and HD is the D-th harmonic number.

Latent variables. The remaining sampling steps are standard, but are included

here for completeness. Sampling the columns of the latent variable matrix X for

each n ∈ [1, . . . , N ] we have

P (xn|−) ∝ P (yn|xn,−)P (xn) = N (xn;µn,Λ) (3.17)

where Λ = GTψ−1G + I and µn = Λ−1GTψ−1yn. Note that since Λ does not

depend on t we only need to compute and invert it once per iteration. Calcu-

lating Λ is order O(K2D), and calculating its Cholesky decomposition is O(K3).

Calculating µn is order O(KD) and must be calculated for all N xn’s, a total of

O(NKD). Thus sampling X is order O(K2D +K3 +NKD).

Factor covariance. If the mixture coefficient variances are constrained to be

equal, we have λk = λ ∼ Gamma(aλ, bλ). The posterior update is then given by

λ|G ∼ Gamma(aλ +
∑
kmk
2

, bλ +
∑

d,kG
2
dk).

However, if the variances are allowed to be different for each column of

G, we set λk ∼ Gamma(aλ, bλ), and the posterior update is given by λk|G ∼
Gamma(aλ + mk

2
, bλ +

∑
dG

2
dk). In this case we may also wish to share power

across factors, in which case we also sample bλ. Putting a Gamma prior on bλ

such that bλ ∼ Gamma(aλ0, bλ0), the posterior update is bλ|λk ∼ Gamma(aλ0 +

cK, bλ0 +
∑K

k=1 λk)

Noise variance. The additive Gaussian noise can be constrained to be isotropic,

in which case the inverse variance is given a Gamma prior: ψ−1
d = ψ−1 ∼

Gamma(aψ, bψ) which gives the posterior update ψ−1|− ∼ Gamma(aψ+ ND
2
, bψ+∑

d,nE
2
dn) (where E is again the matrix of residuals).

However, if the noise is only assumed to be independent, then each dimen-

sion has a separate variance, whose inverse is given a Gamma prior: ψ−1
d ∼
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Gamma(aψ, bψ) which gives the posterior update ψ−1
d |− ∼ Gamma(a + N

2
, b +∑

nE
2
dn). If bψ is given prior distribution Gamma(aψ0, bψ0) the Gibbs update is

bψ|− ∼ Gamma(aψ0 + aD, bψ0 +
∑D

d=1 ψ
−1
d ).

Algorithm 1 One iteration of the NSFA sampler

for d = 1 to D do
for k = 1 to K do

if m−d,k > 0 then
Sample Zdk using Equations 3.6 and 3.5

end if
end for
Propose having κ∗d singleton features, according to Equation 3.7
Accept singletons according to Equation 3.11

end for
for n = 1 to N do

Sample X:n using Equation 3.17
end for
Sample α, φ, λg as detailed above.

3.2.1 Getting it right

To validate our sampling algorithm for NSFA we follow the joint distribution

testing method of Geweke [2004]. There are two ways to sample from the joint

distribution, P (Y, θ) over parameters, θ and data, Y defined by a probabilis-

tic model such as NSFA. The first we will refer to “marginal-conditional” sam-

pling:

for m = 1 to M do

θ(m) ∼ P (θ)

Y (m) ∼ P (Y |θ(m))

end for

Both steps here are straightforward: sampling from the prior followed by sampling

from the likelihood model. The second way, refered to as “successive-conditional”

sampling, proceeds as follows:

θ(1) ∼ P (θ)

Y (1) ∼ P (Y |θ(1))
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for m = 2 to M do

θ(m) ∼ Q(θ|θ(m−1), Y (m−1))

Y (m) ∼ P (Y |θ(m))

end for

where Q represents a single (or multiple) iteration(s) of our MCMC sampler. To

validate our sampler we can then check, either informally or using hypothesis

tests, whether the samples drawn from the joint P (Y, θ) in these two different

ways appear to have come from the same distribution.

We apply this method to our NSFA sampler with just N = D = 2, and all

hyperparameters fixed as follows: α = 2, β = 0, ψd = 1, λk = 1. We draw 104 sam-

ples using both the marginal-conditional and successive-conditional procedures,

the latter for both methods of sampling new features (see Section 3.2). We can

look at various characteristics of the samples, but we focus here on the number

of active features. The distribution of the number of features under the cor-

rect successive-conditional sampler matches that under the marginal-conditional

sampler almost perfectly, but the old method where all singleton features of the

current row are deleted before proposing adding new features results in signif-

icantly fewer features being active (see Figure 3.3). It is surprising that what

seems like a small change can have such a large effect on the equilibrium distri-

bution: the expected numbers of features is 3, but the incorrect sampler gives

an empirical average of 1.21. Under the correct successive-conditional sampler

the average number of features is 3.0034: a hypothesis test did not reject the

null hypothesis that the means of the two distributions are equal. While this

cannot completely guarantee correctness of the algorithm and code, 104 samples

is a large number for such a small model and thus gives strong evidence that our

algorithm is correct.

27



0 1 2 3 4 5 6 7 8 9 101112
0

0.1

0.2

0.3

0.4

num features
0 1 2 3 4 5 6 7 8 9 101112

0

0.1

0.2

0.3

0.4

num features
0 1 2 3 4 5 6 7 8 9 101112

0

0.1

0.2

0.3

0.4

num features

Figure 3.3: Joint distribution test results. Histograms of number of features
for 104 samples drawn from the NSFA model in different ways. Left: from the
prior with α = 2, D = 2. Middle: the successive-conditional procedure, using
correct sampling of new features. Right: the successive-conditional procedure,
with deleting all singleton features before proposing adding new features.

3.3 Results

We compare the following models:

• FA - Bayesian Factor Analysis, see for example Kaufman & Press [1973]

or Rowe & Press [1998]

• AFA - Factor Analysis with ARD prior to determine active sources

• FOK - The sparse Factor Analysis method of Fokoue [2004], Fevotte &

Godsill [2006] and Archambeau & Bach [2009]

• SPCA - The Sparse PCA method of Zou et al. [2006]

• BFRM - Bayesian Factor Regression Model of West et al. [2007].

• SFA - Sparse Factor Analysis, using the finite IBP

• NSFA - The proposed model: Nonparametric Sparse Factor Analysis

We use one synthetic dataset and three real biological datasets.

28



3.3.1 Synthetic data

Since generating a connectivity matrix Z from the IBP itself would clearly bias

towards our model, we instead use the D = 100 gene by K = 16 factor E.

Coli connectivity matrix derived in Kao et al. [2004] from RegulonDB and cur-

rent literature. We ignore whether the connection is believed to be up or down

regulation, resulting in a binary matrix Z. We generate random datasets with

N = 100 samples by drawing the non-zero elements of G (corresponding to the

elements of Z which are non-zero), and all elements of X, from a zero mean unit

variance Gaussian, calculating Y = GX + E, where E is Gaussian white noise

with variance set to give a signal to noise ratio of 10.

As a metric for evaluating performance, we introduce the reconstruction error,

Er as

Er(G, Ĝ) =
1

DK

K∑
k=1

min
k̂∈{1,..,K̂}

D∑
d=1

(Gdk − Ĝdk̂)
2, (3.18)

where Ĝ, K̂ are the inferred quantities. Although we minimize over permuta-

tions, we do not minimize over rotations since, as noted in Fokoue [2004], the

sparsity of the prior stops the solution being rotation invariant. We average this

error over the last 10 samples of the MCMC run. This error function does not

penalize inferring extra spurious factors, so we will investigate this possibility

separately. The precision and recall of active elements of the Z achieved by each

algorithm (after thresholding for the non-sparse algorithms) were investigated but

are omitted here since the results are consistent with the reconstruction error.

The reconstruction error for each method with different numbers of latent

features is shown in Figure 3.4. Ten random datasets were used and for the sam-

pling methods (all but SPCA) the results were averaged over the last ten samples

out of 1000. Unsurprisingly, plain Factor Analysis (FA) performs the worst, with

increasing overfitting as the number of factors is increased. For K̂ = 20 the vari-

ance is also very high, since the four spurious features fit noise. Using an ARD

prior on the features (AFA) improves the performance, and overfitting no longer

occurs. The reconstruction error is actually less for K̂ = 20, but this is an arte-

fact due to the reconstruction error not penalizing additional spurious features
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Figure 3.4: Boxplot of reconstruction errors for simulated data derived from the
E. Coli connectivity matrix of Kao et al. [2004]. Ten datasets were generated and
the reconstruction error calculated for the last ten samples from each algorithm.
Numbers refer to the number of latent factors used, K. a1 denotes fixing α = 1.
sn denotes sharing power between noise dimensions.
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in the inferred G. The Sparse PCA (SPCA) of Zou et al. [2006] shows improved

reconstruction compared to the non-sparse methods (FA and AFA) but does not

perform as well as the Bayesian sparse models. Sparse factor analysis (SFA),

the finite version of the full infinite model, performs very well. The Bayesian

Factor Regression Model (BFRM) performs significantly better than the ARD

factor analysis (AFA), but not as well as our sparse model (SFA). It is interesting

that for BFRM the reconstruction error decreases significantly with increasing

K̂, suggesting that the default priors may actually encourage too much sparsity

for this dataset. Fokoue’s method (FOK) only performs marginally better than

AFA, suggesting that this “soft” sparsity scheme is not as effective at finding the

underlying sparsity in the data. Overfitting is also seen, with the error increasing

with K̂. This could potentially be resolved by placing an appropriate per factor

ARD-like prior over the scale parameters of the Gamma distributions controlling

the precision of elements of G. Finally, the Non-parametric Sparse Factor Analy-

sis (NSFA) proposed here and in Rai & Daumé III [2008] performs very well, with

reconstruction errors an order of magnitude smaller than the competing methods.

With fixed α = 1 (a1) or inferring α we see very similar performance. Using the

soft coupling (sn) variant which shares power between dimensions when fitting

the noise variances gives a lower median error, which is reasonable in this exam-

ple since the noise was in fact isotropic, but has a few of outlying solutions with

somewhat poorer reconstruction error.

Since the reconstruction error does not penalize spurious factors it is impor-

tant to check that NSFA is not scoring well simply by inferring many additional

factors. Histograms for the number of latent features inferred by the nonpara-

metric sparse model for a typical synthetic dataset are shown in Figure 3.5. This

represents an approximate posterior over K. For both fixed α = 1 and inferred

α = 2.78 ± 0.66 the posterior for K is concentrated on the true value K = 16,

with minimal bias: EK = 16.08 with α = 1 and EK = 16.28 with learnt α.

The variance of the posterior on K is slightly increased when learning alpha, as

we would expect, increasing from a standard deviation of 0.294 to 0.536. These

results suggest our results are reasonably robust to the choice of α. The pos-

teriors exhibit negative skew: values of K less than 16 are very unlikely since

this involves removing a useful feature, but the sampler occasionally “imagines”
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Figure 3.5: Histograms of the number of latent features inferred by the nonpara-
metric sparse FA sampler for the last 1000 samples out of 10,000. Left: With
α = 1. Right: Inferring α.

features in the added Gaussian noise. For some of the random datasets, the pos-

terior on K concentrates on values less than the true value 16, maybe because

elements of Z which are 1 are masked by very small corresponding values of G.

This hypothesis is supported by the results of a similar experiment where G was

set equal to Z (with no additional Gaussian weight). In this case, the sampler

always converged to at least 16 features, but would also sometimes infer spurious

features from noise (results not shown).

3.3.2 Convergence

NSFA can sometimes suffer from slow convergence if the number of new features

is drawn from the prior. Figure 3.6 shows how the different proposal distribu-

tions for the number of unique features in the d-th row, κd, effect how quickly

the sampler reaches a sensible number of features. If we use the prior as the

proposal distribution, the burn in period is quite long, taking around 400 itera-

tions to reach equilibrium. If a mass of 0.1 is added at κd = 1, then the sampler

creates almost all (15) features in around 100 iterations, but then takes some

time (roughly another 500 iterations) to properly incorporate the 16th feature,

presumably because other variables in the model are still burning in. The best

performance in this case seems to be given by setting the factor λ = 10 in Equa-
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tion 3.10, where 16 features are reached after only 200 iterations. Increasing λ

further greatly decreases the acceptance ratio of adding new features, especially

after the features are added initially. Although only 1000 iterations are shown

here, all these experiments were run for 10,000 iterations to confirm convergence.
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Figure 3.6: The effect of different proposal distributions for the number of new
features. Left: Prior. Middle: Prior plus 0.1I(κ = 1). Right: Factor λ = 10.

3.3.3 E. Coli time-series dataset from Kao et al. [2004]

To assess the performance of each algorithm on biological data where no ground

truth is available, we calculated the log likelihood of heldout test data under the

predictive distribution given by the fitted model. Ten percent of entries from Y

were removed at random, ten times, to give ten datasets for inference. We do

not use mean square error as a measure of predictive performance because of the

large variation in the signal to noise ratio across gene expression level probes.

The test log likelihood achieved by the various algorithms on the E. Coli

dataset from Kao et al. [2004], including 100 genes at 24 time-points, is shown

in Figure 3.7a. On this simple dataset incorporating sparsity doesn’t improve

predictive performance. Overfitting the number of latent factors does damage

performance, although using the ARD or sparse prior alleviates the problem.

Based on predictive performance of the finite models, five is a sensible number of

features for this dataset: the NSFA model infers a median number of 4 features,

with some probability of there being 5, as shown in Figure 3.7b.
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(a) Log likelihood of test data under each model
based on the last 100 MCMC samples. The box-
plots show variation across 10 different random
splits of the data into training and test sets.
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(b) Number of active latent features
during a typical MCMC run of the
NSFA model.

Figure 3.7: Results on E. Coli time-series dataset from Kao et al. [2004] (N =
24, D = 100, 3000 MCMC iterations).

3.3.4 Breast cancer dataset from West et al. [2007]

We assess these algorithms in terms of predictive performance on the breast can-

cer dataset of West et al. [2007], including 226 genes across 251 individuals. We

find that all the finite models are sensitive to the choice of the number of fac-

tors, K. The samplers were found to have converged after around 1000 samples

according to standard multiple chain convergence measures, so 3000 MCMC it-

erations were used for all models. The predictive log likelihood was calculated

using the final 100 MCMC samples. Figure 3.8a shows test set log likelihoods for

10 random divisions of the data into training and test sets. Factor analysis (FA)

shows significant overfitting as the number of latent features is increased from 20

to 40. Using the ARD prior prevents this overfitting (AFA), giving improved per-

formance when using 20 features and only slightly reduced performance when 40

features are used. The sparse finite model (SFA) shows an advantage over AFA

in terms of predictive performance as long as underfitting does not occur: per-

formance is comparable when using only 10 features. However, the performance

of SFA is sensitive to the choice of the number of factors, K. The performance of

the sparse nonparametric model (NSFA) is comparable to the sparse finite model
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when an appropriate number of features is chosen, but avoids the time consum-

ing model selection process. Fokoue’s method (FOK) was run with K = 20 and

various settings of the hyperparameter d which controls the overall sparsity of the

solution. The model’s predictive performance depends strongly on the setting of

this parameter, with results approaching the performance of the sparse models

(SFA and NSFA) for d = 10−4. The performance of BFRM on this dataset is

noticeably worse than the other sparse models.

We now consider the computation cost of the algorithms. As described in

Section 3.2, sampling Z and G takes order O(NKD) operations per iteration,

and sampling X takes O(K2D +K3 +KND). However, for the relatively small

sample sizes, N encountered for datasets 1 and 2 the main computational cost

is sampling the non-zero elements of G, which takes O((1 − s)DK) where s is

the sparsity of the model. Figure 3.8c shows the mean CPU time per iteration

divided by the number of features at that iteration. Naturally, straight FA is the

fastest, taking only around 0.025s per iteration per feature. The value increases

slightly with increasing K, suggesting that here the O(K2D + K3) calculation

and inversion of λ, the precision of the conditional on X, must be contributing.

The computational cost of adding the ARD prior is negligible (AFA). The CPU

time per iteration is just over double for the sparse finite model (SFA), but the

cost actually decreases with increasing K, because the sparsity of the solution

increases to avoid overfitting. There are fewer non-zero elements of G to sample

per feature, so the CPU time per feature decreases. The CPU time per iteration

per feature for the non-parametric sparse model (NSFA) is somewhat higher than

for the finite model because of the cost of the feature birth and death process.

However, Figure 3.8b shows the absolute CPU time per iteration, where we see

that the nonparametric model is only marginally more expensive than the finite

model of appropriate size K̂ = 15 and cheaper than choosing an unnecessarily

large finite model (SFA with K = 20, 40). Fokoue’s method (FOK) has compara-

ble computational performance to the sparse finite model, but interestingly has

increased cost for the optimal setting of d = 10−4. The parameter space for FOK

is continuous, making search easier but requiring a normal random variable for

every element of G. BFRM pays a considerable computational cost for both the

hierarchical sparsity prior and the DP prior on X. SPCA was not run on this
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(a) Predictive performance: log likelihood of test (the 10% miss-
ing) data under each model based on the last 100 MCMC samples.
Higher values indicate better performance. The boxplots show vari-
ation across 10 different random splits of the data into training and
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(b) CPU time (in seconds) per iteration, averaged across the 3000
iteration run.
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(c) CPU time (in seconds) per iteration divided by the number of
features at that iteration, averaged across all iterations.

Figure 3.8: Results on breast cancer dataset (N = 251, D = 226, 3000 MCMC
iterations).
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Figure 3.9: Test set log likelihoods on Prostate cancer dataset from Yu & et al.
Landsittel [2004], including 12557 genes across 171 individuals (1000 MCMC
iterations).

dataset but results on the synthetic data in Section 3.3.1 suggest it is somewhat

faster than the sampling methods, but not hugely so. The computational cost

of SPCA is ND2 + mO(D2K + DK2 + D3) in the N > D case (where m is

the number of iterations to convergence) and ND2 + mO(D2K + DK2) in the

D > N case taking the limit λ → ∞. In either case an individual iteration of

SPCA is more expensive than one sampling iteration of NSFA (since K < D) but

fewer iterations will generally be required to reach convergence of SPCA than are

required to ensure mixing of NSFA.

3.3.5 Prostate cancer dataset from Yu & et al. Landsittel

[2004]

The predictive performance of AFA, FOK and NSFA on the prostate cancer

dataset of Yu & et al. Landsittel [2004], for ten random splits into training and

test data, is shown in Figure 3.9. The boxplots show variation from ten random

splits into training and test data. The large number of genes (D = 12557 across

N = 171 individuals) in this dataset makes inference slower, but the problem is
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manageable since the computational complexity is linear in the number of genes.

Despite the large number of genes, the appropriate number of latent factors, in

terms of maximizing predictive performance, is still small, around 10 (NSFA infers

a median of 12 factors). This may seem small relative to the number of genes,

especially in comparison to the breast cancer and E. Coli datasets. However it

should be noted that the genes included in those datasets are those capturing

the most variability, whereas here all genes on the microarray are included, the

majority of which are not expected to have significant signal. Surprisingly, SFA

actually performed slightly worse on this dataset than AFA. Both are highly

sensitive to the number of latent factors chosen. NSFA however gives better

predictive log likelihoods than either finite model for any fixed number of latent

factors K. Running 1000 iterations of NSFA on this dataset takes under 8 hours.

BFRM and FOK were impractically slow to run on this dataset.

3.4 Discussion

We have seen that in the E. Coli, breast cancer and prostate cancer datasets that

sparsity can improve predictive performance, as well as providing a more easily

interpretable solution. Using the IBP to provide sparsity is straightforward, and

allows the number of latent factors to be inferred within a well defined theoretical

framework. This has several advantages over manually choosing the number of

latent factors. Choosing too few latent factors damages predictive performance,

as seen for the breast cancer dataset. Although choosing too many latent factors

can be compensated for by using appropriate ARD-like priors, we find this is

typically more computationally expensive than the birth and death process of

the IBP. Manual model selection is an alternative but is time consuming. Finally

on the prostate cancer dataset we show that running NSFA on full gene expression

datasets with 10,000+ genes is feasible so long as the number of latent factors

remains relatively small. In Doshi-Velez et al. [2009a] we show that it is possible

to derive a parallel sampling algorithm for such models. Each node in the cluster

owns a subset of the data, and information is propagated by message passing

between the nodes.

Our results corroborate the findings of Mohamed et al. [2011], in the case of
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a Gaussian likelihood, that spike-and-slab priors give superior predictive perfor-

mance compared to “soft” sparsity schemes such as using student-t priors (FOK)

or L1 regularisation (SPCA). Mohamed et al. [2011] did not consider learning

the latent dimensionality K, although their results clearly suggest this would be

beneficial (which our results confirm). Combining the methodology of Mohamed

et al. [2011] to model different data types with the techniques presented here to

infer the latent dimensionality could be a fruitful line of investigation.

An interesting direction for future research is how to incorporate prior knowl-

edge, for example if certain transcription factors are known to regulate specific

genes. Incorporating this knowledge could both improve the performance of the

model and improve interpretability by associating latent variables with specific

transcription factors. Another possibility is incorporating correlations in the In-

dian Buffet Process, which has been proposed for simpler models [Courville et al.,

2009; Doshi-Velez & Ghahramani, 2009b]. This would be appropriate in a gene

expression setting where multiple transcription factors might be expected to share

sets of regulated genes due to common motifs. Unfortunately, performing MCMC

in all but the simplest of these models suffers from slow mixing.
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Chapter 4

Pitman Yor Diffusion Trees

A proportion of the work in this chapter was published in Knowles & Ghahramani

[2011b]. In this chapter we introduce the Pitman Yor Diffusion Tree (PYDT), a

Bayesian non-parametric prior over tree structures which generalises the Dirichlet

Diffusion Tree [Neal, 2001] and removes the restriction to binary branching struc-

ture. The generative process is described and shown to result in an exchangeable

distribution over data points. We prove some theoretical properties of the model

including showing its construction as the continuum limit of a nested Chinese

restaurant process model. We then present two inference methods: a collapsed

MCMC sampler which allows us to model uncertainty over tree structures, and

a computationally efficient greedy Bayesian EM search algorithm (full details of

which are given in Chapter 7). Both algorithms use message passing on the tree

structure. The utility of the model and algorithms is demonstrated on synthetic

and real world data, both continuous and binary.

Tree structures play an important role in machine learning and statistics.

Learning a tree structure over data points gives a straightforward picture of how

objects of interest are related. Trees are easily interpreted and intuitive to un-

derstand. Sometimes we may know that there is a true hierarchy underlying

the data: for example species in the tree of life or duplicates of genes in the

human genome, known as paralogs. Typical mixture models, such as Dirichlet

Process mixture models, have independent parameters for each component. We

might expect for example that certain clusters are similar, being sub-groups of

some larger group. By learning this hierarchical similarity structure, the model
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can share statistical strength between components to make better estimates of

parameters using less data.

Classical hierarchical clustering algorithms employ a bottom up “agglomera-

tive” approach [Duda et al., 2001] based on distances which hides the statistical

assumptions being made. Heller & Ghahramani [2005] use a principled proba-

bilistic model in lieu of a distance metric but simply view the hierarchy as a tree

consistent mixture over partitions of the data. If instead a full generative model

for both the tree structure and the data is used [Blei et al., 2010; Neal, 2003a;

Teh et al., 2008; Williams, 2000] Bayesian inference machinery can be used to

compute posterior distributions over the tree structures themselves.

An advantage of generative probabilistic models for trees is that they can be

used as a building block for other latent variable models [Adams et al., 2010; Rai

& Daumé III, 2008]. We could use this technique to build topic models with hier-

archies on the topics, or hidden Markov models where the states are hierarchically

related. Greedy agglomerative approaches can only cluster latent variables after

inference has been done and hence they cannot be used in a principled way to

aid inference in the latent variable model.

Both heuristic and generative probabilistic approaches to learning hierarchies

have focused on learning binary trees. Although computationally convenient this

restriction may be undesirable: where appropriate, arbitrary trees provide a more

interpretable, clean summary of the data. Some recent work has aimed to address

this Adams et al. [2010]; Blundell et al. [2010], which we discuss in Section 4.1.

The Dirichlet Diffusion Tree (DDT) introduced in Neal [2003a], and reviewed

in Section 4.2, is a simple yet powerful generative model which specifies a dis-

tribution on binary trees with multivariate Gaussian distributed variables at the

leaves. The DDT is a Bayesian nonparametric prior, and is a generalization of

Dirichlet Process mixture models [Antoniak, 1974; Rasmussen, 2000]. The DDT

can be thought of as providing a very flexible density model, since the hierar-

chical structure is able to effectively fit non-Gaussian distributions. Indeed, in

Adams et al. [2008] the DDT was shown to significantly outperform a Dirichlet

Process mixture model in terms of predictive performance, and in fact slightly

outperformed the Gaussian Process Density Sampler. The DDT also formed part

of the winning strategy in the NIPS 2003 feature extraction challenge [Guyon
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et al., 2005]. The DDT is thus both a mathematically elegant nonparametric

distribution over hierarchies and provides state-of-the-art density estimation per-

formance.

We introduce the Pitman Yor Diffusion Tree (PYDT), a generalization of the

DDT to trees with arbitrary branching structure. While allowing atoms in the

divergence function of the DDT can in principle be used to obtain multifurcating

branch points [Neal, 2003a], our solution is both more flexible and more mathe-

matically and computationally tractable. An interesting property of the PYDT

is that the implied distribution over tree structures corresponds to the multifur-

cating Gibbs fragmentation tree [McCullagh et al., 2008], a very general process

generating exchangeable and consistent trees (here consistency can be understood

as coherence under marginalization of subtrees).

This chapter is organised as follows. Section 4.1 briefly introduces some rele-

vant work and background material on the DDT. In Section 4.3 we describe the

generative process corresponding to the PYDT. In Section 4.4 we derive the prob-

ability of a tree and show some important properties of the process. Section 4.5

describes our hierarchical clustering models utilising the PYDT. In Section 4.6

we present an MCMC sampler. We defer to Chapter 7 for details of a greedy

EM algorithm for the PYDT (and DDT), which we developed in Knowles et al.

[2011a]. We present results demonstrating the utility of the PYDT in Section 4.7.

4.1 Related work

Most hierarchical clustering methods, both distance based [Duda et al., 2001] and

probabilistic [Heller & Ghahramani, 2005; Teh et al., 2008], have focused on the

case of binary branching structure. In Bayesian hierarchical clustering [Heller &

Ghahramani, 2005] the traditional bottom-up agglomerative approach is kept but

a principled probabilistic model is used to find subtrees of the hierarchy. Bayesian

evidence is then used as the metric to decide which node to incorporate in the

tree. An extension where the restriction to binary trees is removed is proposed in

Blundell et al. [2010]. They use a greedy agglomerative search algorithm based on

various possible ways of merging subtrees. As for Heller & Ghahramani [2005] the

lack of a generative process prohibits modelling uncertainty over tree structures.
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Non-binary trees are possible in the model proposed in Williams [2000] since

each node independently picks a parent in the layer above, but it is necessary

to pre-specify the number of layers and number of nodes in each layer. Their

attempts to learn the number of nodes/layers were in fact detrimental to empir-

ical performance. Unlike the DDT or PYDT, the model in Williams [2000] is

parametric in nature, so its complexity cannot automatically adapt to the data.

The nested Chinese restaurant process has been used to define probability

distributions over tree structures. In Blei et al. [2010] each data point is drawn

from a mixture over the parameters on the path from the root to the data point,

which is appropriate for mixed membership models but not standard clustering.

It is possible to use the nested CRP for hierarchical clustering, but either a finite

number of levels must be pre-specified, some other approach of deciding when to

stop fragmenting must be used, or chains of infinite length must be integrated

over Steinhardt & Ghahramani [2012]. We will show in Section 4.4.5 that the

DDT and PYDT can be reconstructed as the continuum limits of particular nested

CRP models.

An alternative to the PYDT to obtain unbounded trees is given by Adams

et al. [2010], which is closely related to the nested CRP. They use a nested

stick-breaking representation to construct the tree, which is then endowed with

a diffusion process. At each node there is a latent probability of the current data

point stopping, and so data live at internal nodes of the tree, rather than at

leaves as in the PYDT. Despite being computationally appealing, this construc-

tion severely limits how much the depth of the tree can adapt to data [Steinhardt

& Ghahramani, 2012].

Kingman’s coalescent [Kingman, 1982; Teh et al., 2008] is similar to the Dirich-

let Diffusion Tree in spirit although the generative process is defined going back-

wards in time as datapoints coalesce together, rather than forward in time as

for the DDT. Kingman’s coalescent is the dual process to the Dirichlet diffusion

tree, in the following sense. Imagine we sample a partition of [n] from the Chi-

nese restaurant process with hyperparameter α, coalesce this partition for a small

time dt, and then “fragment” the resulting partition according to the DDT with

constant rate function for time dt. The final partition will be CRP distributed

with concentration α, showing that the DDT fragmentation has “undone” the
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effect of the coalescent process. This duality is used in Teh et al. [2011] to define

a partition valued stochastic process through time. Although the generalisation

of Kingman’s coalescent to arbitrary branching structures has been studied in the

probability literature under the name Λ-coalescent [Pitman, 1999; Sagitov, 1999],

it has not to our knowledge been used as a statistical model conditioned on data.

4.2 The Dirichlet Diffusion Tree

The Dirichlet Diffusion Tree was introduced in Neal [2003a] as a top-down gen-

erative model for trees over N datapoints x1, x2, · · · , xN ∈ RD. We will describe

the generative process for the data in terms of a diffusion process in fictitious

“time” on the unit interval. The observed data points (or latent variables) corre-

spond to the locations of the diffusion process at time t = 1. The first datapoint

starts at time 0 at the origin in a D-dimensional Euclidean space and follows

a Brownian motion with variance σ2 until time 1. If datapoint 1 is at position

x1(t) at time t, the point will reach position x1(t+ dt) ∼ N(x1(t), σ2Idt) at time

t+ dt. It can easily be shown that x1(t) ∼ Normal(0, σ2It). The second point x2

in the dataset also starts at the origin and initially follows the path of x1. The

path of x2 will diverge from that of x1 at some time Td after which x2 follows

a Brownian motion independent of x1(t) until t = 1, with xi(1) being the i-th

data point. In other words, the infinitesimal increments for the second path are

equal to the infinitesimal increments for the first path for all t < Td. After Td,

the increments for the second path N(0, σ2Idt) are independent. The probability

of diverging in an interval [t, t+dt] is determined by a “divergence function” a(t)

(see Equation 4.9 below) which is analogous to the hazard function in survival

analysis.

The generative process for datapoint i is as follows. Initially xi(t) follows the

path of the previous datapoints. If at time t the path of xi(t) has not diverged,

it will diverge in the next infinitesimal time interval [t, t+ dt] with probability

a(t)dt

m
(4.1)

where m is the number of datapoints that have previously followed the current
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path. The division by m is a reinforcing aspect of the DDT: the more datapoints

follow a particular branch, the more likely subsequent datapoints will not diverge

off this branch (this division is also required to ensure exchangeability). If xi does

not diverge before reaching a previous branching point, the previous branches are

chosen with probability proportional to how many times each branch has been

followed before. This reinforcement scheme is similar to the Chinese restaurant

process [Aldous, 1983]. For the single data point xi(t) this process is iterated

down the tree until divergence, after which xi(t) performs independent Brownian

motion until time t = 1. The i-th observed data point is given by the location of

this Brownian motion at t = 1, i.e. xi(1).

For the purpose of this chapter we use the divergence function a(t) = c
1−t ,

with “smoothness” parameter c > 0. Larger values c > 1 give smoother densities

because divergences typically occur earlier, resulting in less dependence between

the datapoints. Smaller values c < 1 give rougher more “clumpy” densities with

more local structure since divergence typically occurs later, closer to t = 1. We

refer to Neal [2001] for further discussion of the properties of this and other

divergence functions. Figure 4.1 illustrates the Dirichlet diffusion tree process for

a dataset with N = 4 datapoints.

The probability of generating the tree, latent variables and observed data

under the DDT can be decomposed into two components. The first component

specifies the distribution over the tree structure and the divergence times. The

second component specifies the distribution over the specific locations of the

Brownian motion when the tree structure and divergence times are given.

Before we describe the functional form of the DDT prior we will need two

results. First, the probability that a new path does not diverge between times

s < t on a segment that has been followed m times by previous data-points can

be written as

P (not diverging) = exp [(A(s)− A(t))/m], (4.2)

where A(t) =
∫ t

0
a(u)du is the cumulative rate function. For our divergence

function A(t) = −c log (1− t). Second, the DDT prior defines an exchangeable

distribution: the order in which the datapoints were generated does not change
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Figure 4.1: A sample from the Dirichlet Diffusion Tree with N = 4 datapoints.
Top: the location of the Brownian motion for each of the four paths. Bottom:
the corresponding tree structure. Each branch point corresponds to an internal
tree node.

the joint density. See Neal [2003a] for a proof.

We now consider the tree as a set of segments S(T) each contributing to the

joint probability density. The tree structure T contains the counts of how many

datapoints traversed each segment. Consider an arbitrary segment [ab] ∈ S(T)

from node a to node b with corresponding locations xa and xb and divergence

times ta and tb, where ta < tb. Let m(b) be the number of leaves under node b,

i.e. the number of datapoints which traversed segment [ab]. Let l(b) and r(b) be

the number of leaves under the left and right child of node b respectively, so that

l(b) + r(b) = m(b).

By exchangeability we can assume that it was the second path which diverged

at b. None of the subsequent paths that passed through a diverged before time

tb (otherwise [ab] would not be a contiguous segment). The probability of this

46



happening is

P (tb|[ab], ta) =

2nd branch diverges︷ ︸︸ ︷
a(tb)

1

m(b)−1∏
i=1

(i+1)th branch does not diverge before b︷ ︸︸ ︷
exp[(A(ta)− A(tb))/i] (4.3)

= a(tb) exp [(A(ta)− A(tb))Hm(b)−1], (4.4)

where Hn =
∑n

i=1 1/i is the nth harmonic number. This expression factorizes

into a term for ta and tb. Collecting such terms from the branches attached to an

internal node i the factor for ti for the divergence function a(t) = c/(1− t) is

a(ti)e
[A(ti)(Hl(i)−1+Hr(i)−1−Hm(i)−1)]

= c(1− ti)cJl(i),r(i)−1, (4.5)

where Jl,r = Hr+l−1 −Hl−1 −Hr−1.

Each path that went through xb, except the first and second, had to choose

to follow the left or right branch. Again, by exchangeability, we can assume that

all l(b)− 1 paths took the left branch first, then all r(b)− 1 paths chose the right

branch. The probability of this happening is

P ([ab]) =
(l(b)− 1)!(r(b)− 1)!

(m(b)− 1)!
. (4.6)

Finally, we include a term for the diffusion locations:

P (xb|xa, ta, tb) = N(xb;xa, σ
2(tb − ta)). (4.7)

The full joint probability for the DDT is now a product of terms for each segment

P (x, t,T) =
∏

[ab]∈S(T)

P (xb|xa, ta, tb)P (tb|[ab], ta)P ([ab]). (4.8)

4.3 Generative process for the PYDT

The PYDT generative process is analogous to that for the DDT, but altered to

allow arbitrary branching structures. Firstly, the probability of diverging from a
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branch having previously been traversed by m data points in interval [t, t+ dt] is

given by

a(t)Γ(m− α)dt

Γ(m+ 1 + θ)
(4.9)

where Γ(.) is the standard Gamma function, and 0 ≤ α ≤ 1, θ ≥ −2α are

parameters of the model (see Section 4.4.2 for further discussion of allowable

parameter ranges). When θ = α = 0 we recover binary branching and the DDT

expression in Equation 4.1. Secondly, if xi does not diverge before reaching a

previous branching point, it may either follow one of the previous branches, or

diverge at the branch point (adding one to the degree of this node in the tree).

The probability of following one of the existing branches k is

bk − α
m+ θ

(4.10)

where bk is the number of samples which previously took branch k and m is the

total number of samples through this branch point so far. The probability of

diverging at the branch point and creating a new branch is

θ + αK

m+ θ
(4.11)

where K is the current number of branches from this branch point. By sum-

ming Equation 4.10 over k = {1, . . . , K} with Equation 4.11 we get 1, since∑
k bk = m, as required. This reinforcement scheme is analogous to the Pitman

Yor process [Pitman & Yor, 1997; Teh, 2006] version of the Chinese restaurant

process [Aldous, 1983].

4.3.1 Sampling the PYDT in practice

It is straightforward to sample from the PYDT prior. This is most easily done by

sampling the tree structure and divergence times first, followed by the divergence

locations. We will need the inverse cumulative divergence function, e.g. A−1(y) =

1.0− exp(−y/c) for the divergence function a(t) = c/(1− t).
Each point starts at the root of the tree. The cumulative distribution function
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for the divergence time of the i-th sample is

C(t) = 1− exp

{
−A(t)

Γ(i− 1− α)

Γ(i+ θ)

}
(4.12)

We can sample from this distribution by drawing U ∼ Uniform[0, 1] and setting

td = C−1(U) := A−1

(
− Γ(i+ θ)

Γ(i− 1− α)
log (1− U)

)
(4.13)

If td is actually past the next branch point, we diverge at this branch point or

choose one of the previous paths with the probabilities defined in Equations 4.11

and 4.10 respectively. If we choose one of the existing branches then we must

again sample a divergence time. On an edge from node a to b previously traversed

by m(b) data points, the cumulative distribution function for a new divergence

time is

C(t) = 1− exp

{
−[A(t)− A(ta)]

Γ(m(b)− α)

Γ(m(b) + 1 + θ)

}
(4.14)

which we can sample as follows

td := A−1

(
A(ta)−

Γ(m(b) + 1 + θ)

Γ(m(b)− α)
log (1− U)

)
(4.15)

We do not actually need to be able to evaluate A(ta) since this will necessarily

have been calculated when sampling ta. If td > tb we again choose whether to

follow an existing branch or diverge according to Equations 4.11 and 4.10.

Given the tree structure and divergence times sampling the locations simply

involves a sweep down the tree sampling xb ∼ N(xa, σ
2(tb− ta)I) for each branch

[ab].

4.4 Theory

Now we present some important properties of the PYDT generative process.
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4.4.1 Probability of a tree

We refer to branch points and leaves of the tree as nodes. The probability of

generating a specific tree structure with associated divergence times and locations

at each node can be written analytically since the specific diffusion path taken

between nodes can be ignored. We will need the probability that a new data

point does not diverge between times s < t on a branch that has been followed

m times by previous data-points. This can straightforwardly be derived from

Equation 4.9:

P

(
not diverging

in [s, t]

)
= exp

[
(A(s)− A(t))

Γ(m− α)

Γ(m+ 1 + θ)

]
, (4.16)

where A(t) =
∫ t

0
a(u)du is the cumulative rate function.

Consider the tree of N = 4 data points in Figure 4.2. The probability of

obtaining this tree structure and associated divergence times is:

e−A(ta)
Γ(1−α)
Γ(2+θ)

a(ta)Γ(1− α)

Γ(2 + θ)

× e−A(ta)
Γ(2−α)
Γ(3+θ)

1− α
2 + θ

e[A(ta)−A(tb)]
Γ(1−α)
Γ(2+θ)

a(tb)Γ(1− α)

Γ(2 + θ)

× e−A(ta)
Γ(3−α)
Γ(4+θ)

θ + 2α

3 + θ
. (4.17)

The first data point does not contribute to the expression. The second point

contributes the first line: the first term results from not diverging between t = 0

and ta, the second from diverging at ta. The third point contributes the second

line: the first term comes from not diverging before time ta, the second from

choosing the branch leading towards the first point, the third term comes from

not diverging between times ta and tb, and the final term from diverging at time

tb. The fourth and final data point contributes the final line: the first term for

not diverging before time ta and the second term for diverging at branch point a.

Although not immediately obvious, we will see in Section 4.4.3, the tree prob-

ability in Equation 4.17 is invariant to reordering of the data points.

The component of the joint probability distribution resulting from the branch-

50



time

1

2

3

4

0
a

b

Figure 4.2: A sample from the Pitman-Yor Diffusion Tree with N = 4 datapoints
and a(t) = 1/(1− t), θ = 1, α = 0. Top: the location of the Brownian motion for
each of the four paths. Bottom: the corresponding tree structure. Each branch
point corresponds to an internal tree node.

ing point and data locations for the tree in Figure 4.2 is

N(xa; 0, σ2ta)N(xb;xa, σ
2(tb − ta))

×N(x1;xb, σ
2(1− tb))N(x2;xa, σ

2(1− ta))
×N(x3;xb, σ

2(1− tb))N(x4;xa, σ
2(1− ta)) (4.18)

where we see there is a Gaussian term associated with each branch in the tree.

4.4.2 Parameter ranges and branching degree

There are several valid ranges of the parameters (θ, α):

• 0 ≤ α < 1 and θ > −2α. This is the general multifurcating case with

arbitrary branching degree which we will be most interested in (although in
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fact we will often restrict further to θ > 0). α < 1 ensures the probability of

going down an existing branch is non-negative in Equation 4.10. θ > −2α

and α > 0 together ensure that the probability of forming a new branch is

non-negative for any K in Equation 4.11.

• α < 0 and θ = −κα where κ ∈ Z and κ ≥ 3. Here κ is the maximum

number of children a node can have since the probability of forming a new

branch at a node with K = κ existing branches given by Equation 4.11 will

be zero. We require α < 0 to ensure the probability of following an existing

branch is always positive.

• α < 1 and θ = −2α. This gives binary branching, and specifically the DDT

for α = θ = 0. Interestingly however we see that this gives a parameterised

family of priors over binaries trees, which was in fact proposed by MacKay

& Broderick [2007].

There is another degenerate case which is of little interest for statistical modeling:

with α = 1 we always have instantaneous divergence at time t = 0 (since the

numerator in Equation 4.9 contains the term Γ(m − α)) so every data point is

independent.

Consider the parameter range 0 ≤ α < 1 and θ > −2α. By varying θ we can

move between flat (large θ) and hierarchical clusterings (small θ), as shown in

Figure 4.3 (here we have fixed α = 0).

Now consider the binary branching parameter range α < 1 and θ = −2α

which is a special case of the PYDT but still generalises the DDT. As mentioned

in MacKay & Broderick [2007] the parameter α controls the balance of the tree. In

fact, the reinforcing scheme here can be considered as the result of marginalising

out a latent variable, pb at every internal node, b with prior, pb ∼ Beta(−α,−α).

For α = 0 this is a uniform distribution. For α close to 1 the distribution will

concentrate towards point masses at 0 and 1, i.e. towards (δ(0) + δ(1))/2, so

that one branch will be greatly preferred over the other, making the tree more

unbalanced. As α→ −∞ the mass of the beta distribution concentrates towards

a point mass at 0.5 encouraging the tree to be more balanced. A simple measure
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theta

Figure 4.3: The effect of varying θ on the log probability of two tree structures
(i.e. the product of the terms in Equation 4.23 over the segments in the tree),
indicating the types of tree preferred. Small θ < 1 favors binary trees while larger
values of θ favors higher order branching points.

of the imbalance of tree is given by Colless’s I [Colless, 1982], given by

I =
2

(n− 1)(n− 2)

∑
a∈T

|l(a)− r(a)| (4.19)

where n is the number of leaves, a ranges over all internal nodes in the tree,

and l(a) and r(a) are the number of data points that followed the left and right

branches respectively. An alternative is the normalised number of unbalanced

nodes in a tree, J [Rogers, 1996], i.e.

J =
1

(n− 2)

∑
a∈T

(1− I[l(a) = r(a)]) (4.20)

where I is the indicator function. As expected, in Figure 4.4 we see that both

measures of tree imbalance increase with α, with the biggest effects occuring in

the interval [0, 1].

4.4.3 Exchangeability

Exchangeability is both a key modelling assumption and a property that greatly

simplifies inference. We show that analogously to the DDT, the PYDT defines
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Figure 4.4: Two measures of tree imbalance for samples from the binary Pitman-
Yor Diffusion Tree with θ = −2α for varying α. Generated trees had N = 100 and
the tree structure itself is invariant to the divergence function. Left: Colless’s
index of balance, see Equation 4.19. Right: Proportion of unbalanced nodes, see
Equation 4.20.

18

19

17

16

2

3

4

1

0

15

14

13

6

5

11

12

10

9

8

7

Figure 4.5: A sample from the Pitman-Yor Diffusion Tree with N = 20 datapoints
and a(t) = 1/(1− t), θ = 1, α = 0 showing the branching structure including non-
binary branch points.
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(b) c = 1, θ = 0.5, α = 0
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(d) c = 3, θ = 1.5, α = 0

Figure 4.6: Samples from the Pitman-Yor Diffusion Tree with N = 1000 data-
points in D = 2 dimensions and a(t) = c/(1 − t). As θ increases more obvious
clusters appear.
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a infinitely exchangeable distribution over the data points. We first need the

following lemma.

Lemma 1. The probability of generating a specific tree structure, divergence

times, divergence locations and corresponding data set is invariant to the ordering

of data points.

Proof. The probability of a draw from the PYDT can be decomposed into three

components: the probability of the underlying tree structure, the probability of

the divergence times given the tree structure, and the probability of the divergence

locations given the divergence times. We will show that none of these components

depend on the ordering of the data. Consider the tree, T as a set of edges, S(T)

each of which we will see contributes to the joint probability density. The tree

structure T contains the counts of how many datapoints traversed each edge.

We denote an edge by [uv] ∈ S(T), which goes from node u to node v with

corresponding locations xu and xv and divergence times tu and tv. Let the final

number of branches from v be Kv, and the number of samples which followed each

branch be {nvk : k ∈ [1 . . . Kv]}. The total number of datapoints which traversed

edge [uv] is m(v) =
∑Kv

j=1 n
v
k. Denote by S′(T) = {[uv] ∈ S(T) : m(v) ≥ 2} the set

of all edges traversed by m ≥ 2 samples (for divergence functions which ensure

divergence before time 1 this is the set of all edges not connecting to leaf nodes).

Probability of the tree structure. For segment [uv], let i be the index of the

sample which diverged to create the branch point at v. The first i − 1 samples

did not diverge at v so only contribute terms for not diverging (see Equation 4.24

below). From Equation 4.9, the probability of the i-th sample having diverged to

form the branch point is

a(tv)Γ(i− 1− α)

Γ(i+ θ)
. (4.21)

We now wish to calculate the probability of final configuration of the branch

point. Following the divergence of sample i there are Kv − 2 samples that form

new branches from the same point, which from Equation 4.11 we see contribute

θ + (k − 1)α to the numerator for k ∈ {3, . . . , Kv}. Let cl be the number of

samples having previously followed path l, so that cl ranges from 1 to nvl − 1,
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which by Equation 4.10 contributes a term
∏nvl −1

cl=1 (cl − α) to the numerator for

l = 2, ..., Kv. Note that c1 only ranges from i− 1 to nv1 − 1, thereby contributing

a term
∏nv1−1

c1=i−1(c1 − α). The j-th sample contributes a factor j − 1 + θ to the

denominator, regardless of whether it followed an existing branch or created a

new one, since the denominator in Equations 4.11 and 4.10 are equal. The factor

associated with this branch point is then:∏Kv
k=3[θ + (k − 1)α]

∏nv1−1
c1=i−1(c1 − α)

∏Kv
l=2

∏nvl −1
cl=1 (cl − α)∏m(v)

j=i+1(j − 1 + θ)

=

∏Kv
k=3[θ + (k − 1)α]

∏Kv
l=1

∏nvl −1
cl=1 (cl − α)∏m(v)

j=i+1(j − 1 + θ)
∏i−2

c1=1(c1 − α)

=

∏Kv
k=3[θ + (k − 1)α]Γ(i+ θ)

∏Kv
l=1 Γ(nvl − α)

Γ(m(v) + θ)Γ(i− 1− α)Γ(1− α)Kv−1
. (4.22)

Multiplying by the contribution from data point i in Equation 4.21 we have

a(tv)
∏Kv

k=3[θ + (k − 1)α]
∏Kv

l=1 Γ(nvl − α)

Γ(m(v) + θ)Γ(1− α)Kv−1
. (4.23)

Each segment [uv] ∈ S′(T) contributes such a term. Since this expression does

not depend on the ordering of the branching events (that is, on the index i), the

overall factor does not either. Note that since a(tv) is a multiplicative factor we

can think of this as part of the probability factor for the divergence times.

Probability of divergence times. The m(v) − 1 points that followed the first

point along this path did not diverge before time tv (otherwise [uv] would not be

an edge), which from Equation 4.16 we see contributes a factor

m(v)−1∏
i=1

exp

[
(A(tu)− A(tv))

Γ(i− α)

Γ(i+ 1 + θ)

]
= exp

[
(A(tu)− A(tv))H

θ,α
m(v)−1

]
, (4.24)

where we define Hθ,α
n =

∑n
i=1

Γ(i−α)
Γ(i+1+θ)

. All edges [uv] ∈ S′(T) contribute the
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expression in Equation 4.24, resulting in a total contribution∏
[uv]∈S′(T)

exp
[
(A(tu)− A(tv))H

θ,α
m(v)−1

]
. (4.25)

This expression does not depend on the ordering of the datapoints.

Probability of node locations. Generalizing Equation 4.18 it is clear that each

edge contributes a Gaussian factor, resulting an overall factor:∏
[uv]∈S(T)

N(xv;xu, σ
2(tv − tu)I). (4.26)

The overall probability of a specific tree, divergence times and node locations

is given by the product of Equations 4.23, 4.25 and 4.26, none of which depend

on the ordering of the data.

The term
∏Kv

k=3[θ + (k − 1)α] in Equation 4.23 can be calculated efficiently

depending on the value of α. For α = 0 we have
∏Kv

k=3 θ = θKv−2. For α 6= 0 we

have

Kv∏
k=3

[θ + (k − 1)α] = αKv−2

Kv∏
k=3

[θ/α + (k − 1)]

=
αKv−2Γ(θ/α +Kv)

Γ(θ/α + 2)
. (4.27)

It is also useful to note that the factor for the divergence times in Equation 4.25

itself factorizes into a term for tu and tv. Collecting such terms from the branches

attached to an internal node v the factor for tv for the divergence function a(t) =

c/(1− t) is

P (tv|T) = a(tv) exp

[
A(tv)

(
Kv∑
k=1

Hθ,α
nvk−1 −Hθ,α

m(v)−1

)]
= c(1− tv)cJ

θ,α
nv −1 (4.28)

where Jθ,αnv = Hθ,α∑K
k=1 n

v
k−1
−∑K

k=1H
θ,α
nvk−1 with n ∈ NK being the number of dat-

apoints having gone down each branch. Equation 4.28 is the generalisation of
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Equation 4.5 for the DDT to the PYDT. It is interesting to note that a priori the

divergence times are independent apart from the constraint that branch lengths

must be non-negative.

Theorem 1. The Pitman-Yor Diffusion Tree defines an infinitely exchangeable

distribution over data points.

Proof. Summing over all possible tree structures, and integrating over all branch

point times and locations, by Lemma 1 we have exchangeability for any finite

number of datapoints, N . As a virtue of its sequential generative process, the

PYDT is clearly projective (see Section 1.1). Being exchangeable and projective,

the PYDT is infinitely exchangeable.

Corollary 1. There exists a prior ν on probability measures on RD such that

the samples x1, x2, . . . generated by a PYDT are conditionally independent and

identically distributed (iid) according to F ∼ ν, that is, we can represent the

PYDT as

PY DT (x1, x2, . . . ) =

∫ (∏
i

F(xi)

)
dν(F).

Proof. Since the PYDT defines an infinitely exchangeable process on data points,

the result follows directly by de Finetti’s Theorem [Hewitt & Savage, 1955].

Another way of expressing Corollary 1 is that data points x1, . . . , xN sampled

from the PYDT could equivalently have been sampled by first sampling a prob-

ability measure F ∼ ν, then sampling xi ∼ F iid for all i in {1, . . . , N}. For

divergence functions such that A(1) is infinite, divergence will necessarily occur

before time t = 1, so that there is zero probability of two data points having the

same location, i.e. the probability measure F is continuous almost surely. Note

that in general we cannot guarantee that F will be absolutely continuous (the

condition required for a density to exist).

4.4.4 Relationship to the DDT

The PYDT is a generalisation of the Dirichlet diffusion tree:

Lemma 2. The PYDT reduces to the Diffusion Dirichlet Tree [Neal, 2001] in

the case θ = α = 0.
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Proof. This is clear from the generative process: for θ = α = 0 there is zero

probability of branching at a previous branch point (assuming continuous cumu-

lative divergence function A(t)). The probability of diverging in the time interval

[t, t+ dt] from a branch previously traversed by m datapoints becomes:

a(t)Γ(m− 0)dt

Γ(m+ 1 + 0)
=
a(t)(m− 1)!dt

m!
=
a(t)dt

m
, (4.29)

as for the DDT.

It is straightforward to confirm that the DDT probability factors are recovered

when θ = α = 0. In this case Kv = 2 since non-binary branch points have zero

probability, so Equation 4.23 reduces as follows:

a(tv)
∏Kv=2

l=1 Γ(nvl − 0)

Γ(m(v) + 0)
=
a(tv)(n

b
1 − 1)!(nb2 − 1)!

(m(v)− 1)!
, (4.30)

as for the DDT. Equation 4.25 also reduces to the DDT expression since

H0,0
n =

n∑
i=1

Γ(i− 0)

Γ(i+ 1 + 0)
=

n∑
i=1

(i− 1)!

i!
=

n∑
i=1

1

i
= Hn, (4.31)

where Hn is the n-th Harmonic number.

4.4.5 The continuum limit of a nested CRP

The PYDT can be derived as the limiting case of a specific nested Chinese Restau-

rant Process [Blei et al., 2004] model (nCRP). We will first show how to construct

the Dirichlet Diffusion Tree as the limit of a simple nCRP model. We then modify

this model so that the limiting process is instead the PYDT.

The Chinese Restaurant Process defines a distribution over partitions of the

natural numbers N. Define a partition of [n] = {1, ..., n} as a collection of disjoints

sets (blocks or clusters) {Bk : k = 1, .., K} such that ∪Kk=1Bk = [n]. The CRP

is constructed iteratively for n = 1, 2, ... Data point n joins an existing block k
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Figure 4.7: A hierarchical partitioning of the integers {1, ..., 7} showing the un-
derlying tree structure.

with probability

|Bk|
θ + n− 1

(4.32)

and forms its own new block with probability

θ

θ + n− 1
. (4.33)

The nested CRP gives a distribution over hierarchical partitions. Denote the K

blocks in the first level as {B1
k : k = 1, ..., K}. We can now imagine partitioning

the elements in each first level block, B1
k, according to independent CRPs. Denote

the blocks in the second level partitioning of B1
k as {B2

kl : l = 1, ..., Kk}. We can

recurse this construction for as many iterations S as we please, forming a S deep

hierarchy of blocks B. Each element belongs to just a single block at each level,

and the partitioning forms a tree structure: consider the unpartitioned set [n] as

the root, with children B1
k. Each B1

k then has children B2
kl, and so on down the

tree, see Figure 4.7. Note that nodes with only a single child are allowed under

this construction. An example draw from an S = 10 level nested CRP is shown

in Figure 4.8. It is certainly possible to work with this model directly (see Blei

et al. [2004, 2010] and more recently Steinhardt & Ghahramani [2012]), but there

are disadvantages, such as having to choose the depth S, or avoid this in some

more convoluted way: Adams et al. [2010] use a stick breaking representation of

the nCRP with unbounded depth S augmented with a probability of stopping
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Figure 4.8: A draw from a S = 10-level nested Chinese restaurant process.

at each internal node, and Steinhardt & Ghahramani [2012] allow S → ∞ but

integrate over countably infinite chains of nodes with only one child. While the

later approach is appealing for discrete data where any bounded diffusion process

on the infinitely deep hierarchy concentrates towards a point mass, this is not

appropriate for continuous data for example. The approach used by the DDT

and PYDT of embedding in continuous time is more apt in this domain.

Theorem 2. Associate each level s in an S-level nCRP with “time” ts = s−1
S
∈

[0, 1), and let the concentration parameter at level s be a(ts)/S, where a : [0, 1] 7→
R+. Taking the limit S →∞ recovers the Dirichlet Diffusion Tree [Neal, 2003a]

with divergence function a(t).

Intuitively, any connected chains of nodes with only one child in the nCRP

will become branches in the DDT. Nodes in the nCRP which do have multiple

children become branch points in the DDT, but we find that these will always be

binary splits.

Proof. From Equation 4.33 the probability of forming a new branch (block) at a
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node on a chain of nodes with only single children (a single block) at level s is

(from the definition of the CRP)

a(ts)/S

m+ a(ts)/S
, (4.34)

where m is the number of previous data points that went down this chain. This

behaves as a(ts)/(Sm) as S becomes large. Informally associating the time inter-

val 1/S with the infinitesimal time interval dt directly yields the DDT divergence

probability a(t)dt/m. More formally, we aim to show that the distribution over

divergence times is given by the DDT in the limit S →∞. The number of nodes

k in a chain starting at level b until divergence is distributed as

a(tb+k)/S

m+ a(tb+k)/S︸ ︷︷ ︸
prob new block at level b+k

k−1∏
i=1

(
1− a(tb+i)/S

m+ a(tb+i)/S

)
︸ ︷︷ ︸

prob not forming new block at level b+i

, (4.35)

where tb = b
S+1

is the “time” of the branch point at the top of the chain. For

constant a(.) Equation 4.35 is a geometric distribution in k. We now take the

limit S →∞, holding k−1
S

= t−tb and b−1
S

= tb fixed so that we also have k →∞.

We analyse how the product in Equation 4.35 behaves:

lim
S→∞

k−1∏
i=1

(
1− a(tb+i)/S

m+ a(tb+i)/S

)

= lim
S→∞

k−1∏
i=1

(
1− a(tb+i)

Sm

)

= exp

{
lim
k→∞

k−1∑
i=1

log

(
1− a(tb + i(t− tb)/(k − 1)))

m

t− tb
k − 1

)}
(4.36)

where we have used that tb+i = tb + i−1
S

and 1
S

= t−tb
k−1

. We are able to exchange

the order of the exp and lim operations because of the continuity of exp. Now we
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use that log (1− x) = −x−O(x2) to give

log

(
1− a(tb + i(t− tb)/(k − 1))

m

t− tb
k − 1

)
= −a(tb + i(t− tb)/(k − 1))

m

t− tb
k − 1

−O(k−2) (4.37)

which allows us to see that the limiting value of the exponent in Equation 4.36

is simply a Riemann integral

lim
k→∞

[
a(tb + i(t− tb)/(k − 1)))

m

t− tb
k − 1

−O(k−2)

]
=

1

m

∫ t

tb

a(τ)dτ (4.38)

Thus taking the limit S → ∞ of Equation 4.35 we find the divergence time,

t = tb + k−1
S

is distributed

a(t)

m
exp

{
−
∫ t
tb
a(τ)dτ

m

}
(4.39)

as for the Dirichlet Diffusion Tree, the waiting time in a inhomogeneous Poisson

process with rate function a(.). In the simple case of constant a(.) = a the

geometric distribution becomes an exponential waiting time with parameter a/m.

At existing branch points the probability of going down an existing branch

k is |Bk|/(m + a(ts)/S) which is simply |Bk|/m in the limit S → ∞, recovering

the DDT. The probability of a third cluster forming at an existing branch point

is given by Equation 4.34 which clearly tends to 0 in the limit, resulting in the

binary nature of the DDT.

An alternative, but more technically involved construction would use a ho-

mogeneous (constant) rate a(.) = a and then use the Poisson process mapping

theorem [Kingman, 1993] to transform this process into a DDT with arbitrary

divergence function a(.).

It was essential in this construction that we drove the concentration parame-

ter to zero as the depth of the tree increases. This avoids complete instantaneous

fragmentation of the tree. For any time ε > 0 there will be infinitely many levels

in the nCRP before time ε when we take S → ∞. If the CRPs in these levels
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have strictly positive concentration parameters, the tree will have completely frag-

mented to individual samples before ε almost surely. This is clearly undesirable

from a modelling perspective since the samples are then independent.

It is interesting that despite the finite level nCRP allowing multifurcating

“branch points” the continuum limit taken in Theorem 2 results in binary branch

points almost surely. We will show how to rectify this limitation in Theorem 3

where we present the analogous construction for the Pitman-Yor Diffusion Tree.

First we mention the possibility of using the two parameter Chinese restaurant

process (the urn representation of the Pitman-Yor process [Pitman & Yor, 1997])

in the construction of the DDT in Theorem 2. This in principle does not introduce

any additional difficulty. One can imagine a nested two parameter CRP, using an

analogous rate function c(t) to give the discount parameter for each level. The

problem is that it would still be necessary to avoid instantaneous fragmentation

by driving the discount parameters to zero as S →∞, e.g. by setting the discount

parameter at time t to c(t)/S. It is straightforward to see that this will again

recover the standard DDT, although with rate function a(t)+c(t): the probability

of divergence will be (a(t) + c(t))/(Sm) when there is one block, i.e. on a chain,

so the logic of Theorem 2 follows; the probability of forming a third cluster at any

branch point is (a(t) + 2c(t))/(Sm) which tends to zero as S → ∞; and finally

the probability of following a branch k at a branch point is bk−c(ts)/S
m+a(ts)/S

which again

recovers the DDT factor bk/m in the limit.

Thus the construction of the DDT in Theorem 2 destroys both the arbitrary

branching structure of the underlying finite level nCRP and does not allow the

extra flexibility provided by the two parameter CRP. This has ramifications be-

yond the construction itself: it implies that attempting to use a simple nCRP

model in a very deep hierarchy has strong limitations. Either only the first few

levels will be used, or the probability of higher order branching events must be

made exponentially small. Note that this is not necessarily a problem for dis-

crete data [Steinhardt & Ghahramani, 2012]. Additionally, the two parameter

generalisation cannot be used to any advantage.

To obtain the multifurcating PYDT rather than the binary DDT we will

modify the construction above.
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Associate level s of an S-level nested partitioning model with time

ts = (s− 1)/S.

For a node at level s with only K = 1 cluster, let the probability of forming a

new cluster be a′(m,s)/S
m+a′(m,s)/S

where

a′(m, s) = ma(ts)
Γ(m− α)

Γ(m+ 1 + θ)
, (4.40)

where 0 ≤ α < 1, θ > −2α are hyperparameters. At an existing branch point (i.e.

if the number of existing clusters is K ≥ 2) then let the probabilities be given by

the two parameter CRP, i.e. the probability of joining an existing cluster k is

bk − α
m+ θ

, (4.41)

where bk is the number of samples in cluster k and m is the total number of

samples through this branch point so far. The probability of diverging at the

branch point and creating a new branch is

θ + αK

m+ θ
, (4.42)

where K is the current number of clusters from this branch point.

Theorem 3. In the limit S →∞ the construction above becomes equivalent to the

PYDT with rate function a(t), concentration parameter θ and discount parameter

α.

Proof. Showing the correct distribution for the divergence times is analogous to

the proof for Theorem 2. The probability of divergence from a chain at any level

s behaves as a′(m,s)
Sm

as S → ∞. The number of nodes k in a chain starting at

level b until divergence is distributed:

a′(m, b+ k)

Sm

k−1∏
i=1

(
1− a′(m, b+ i)

Sm

)
=
a(tb+k)Γ(m− α)

SΓ(m+ 1 + θ)

k−1∏
i=1

(
1− a(tb+i)Γ(m− α)

SΓ(m+ 1 + θ)

)
.

(4.43)
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Following the proof of Theorem 2 in the limit S →∞ this becomes

Γ(m− α)

SΓ(m+ 1 + θ)
a(t) exp

{
− Γ(m− α)

Γ(m+ 1 + θ)

∫ t

tb

a(τ)dτ

}
. (4.44)

Since Equations 4.11 and 4.41, and Equations 4.10 and 4.42 are the same, it is

straightforward to see that the probabilities for higher order branching events are

exactly as for the PYDT, i.e. given by Equation 4.23.

Note that the finite level model of Theorem 3 is not exchangeable until we

take the limit S →∞. Every node at level s with only K = 1 cluster contributes

a factor

m−1∏
i=1

(
1− a′(i, s)/S

j + a′(i, s)/S

)
, (4.45)

where a′(.) is defined in Equation 4.40 and m is the total number of samples

having passed through this node. This factor does not depend on the order of the

data points. Now consider a node with K ≥ 2 clusters at level s. Assume the i-th

sample diverged to create this branch point initially. The first i− 1 samples did

not diverge, the first contributing no factor, and the subsequent i−2 contributing

a total factor

i−1∏
j=2

(
1− a′(j, s)/S

m+ a′(j, s)/S

)
. (4.46)

Although this factor tends to 1 as S → ∞, for finite S it depends on i. The

probability of the i-th sample diverging to form the branch point is

a′(i, s)/S

m+ a′(i, s)/S
=

a(ts)

S + a′(i, s)/i

Γ(i− α)

Γ(i+ 1 + θ)
. (4.47)

The probability contributed by the samples after i is exactly the same as Equa-

tion 4.22 in Lemma 1, given by∏Kb
k=3[θ + (k − 1)α]Γ(i+ θ)

∏Kb
l=1 Γ(nbl − α)

Γ(m(b) + θ)Γ(i− 1 + α)
. (4.48)
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Multiplying this by Equation 4.47 we obtain

a(ts)

S + a′(i, s)/i

∏Kb
k=3[θ + (k − 1)α]

∏Kb
l=1 Γ(nbl − α)

Γ(m(b) + θ)
. (4.49)

It is easy enough to see that we will recover the correct expression for the PYDT

in the limit S → ∞, using 1/S → dt. However, for finite S this factor, and

the factor in Equation 4.46, depend on i, so we do not have exchangeability. It

is interesting that the PYDT is therefore a case where the continuum limit has

more attractive characteristics than the finite model.

4.5 Hierarchical clustering model

To use the PYDT as a hierarchical clustering model we must specify a likelihood

function for the data given the leaf locations of the PYDT, and priors on the

hyperparameters. We use a Gaussian observation model for multivariate contin-

uous data and a probit model for binary vectors. We use the divergence function

a(t) = c/(1− t) and specify the following priors on the hyperparameters:

θ ∼ G(aθ, bθ), α ∼ Beta(aα, bα), (4.50)

c ∼ G(ac, bc), 1/σ2 ∼ G(aσ2 , bσ2), (4.51)

where G(a, b) is a Gamma distribution with shape, a and rate, b. In all experi-

ments we used aθ = 2, bθ = .5, aα = 1, bα = 1, ac = 1, bc = 1, aσ2 = 1, bσ2 = 1.

4.6 Inference

We propose two inference algorithms: an MCMC sampler and a more compu-

tationally efficient greedy EM algorithm. Both algorithms marginalize out the

locations of internal nodes using belief propagation, and are capable of learning

the hyperparameters c, σ2, θ and α if desired.
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4.6.1 MCMC sampler

We construct an MCMC sampler to explore the posterior over the tree structure,

divergence times and hyperparameters. To sample the structure and divergence

times our sampler uses moves that detach and reattach subtrees. A subtree is

chosen uniformly at random to be detached (the subtree may be a single leaf

node). To propose a new position in the tree for the detached subtree, we follow

the procedure for generating a new sample on the remaining tree. The subtree

is attached wherever divergence occurred, which may be on a segment, in which

case a new parent node is created, or at an existing internal node, in which case

the subtree becomes a child of that node. If divergence occurred at a time later

than the divergence time of the root of the subtree we must repeat the procedure

until this is not the case. The marginal likelihood of the new tree is calculated,

marginalizing over the internal node locations, and excluding the structure and

divergence time contribution since this is accounted for by having sampled the

new location according to the prior. The ratio to the marginal likelihood for the

original tree gives the Metropolis factor used to determine whether this move

is accepted. Unfortunately it is not possible to slice sample the position of the

subtree as in Neal [2003a] because of the atoms in the prior at each branch point.

Smoothness hyperparameter, c. From Equation 4.28 the conditional poste-

rior for c is

G

(
ac + |I|, bc +

∑
i∈I

Jθ,α
ni

log (1− ti)
)
, (4.52)

where I is the set of internal nodes of the tree.

Data variance, σ2. It is straightforward to sample 1/σ2 given divergence lo-

cations. Having performed belief propagation it is easy to jointly sample the

divergence locations using a pass of backwards sampling. From Equation 4.26
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the Gibbs conditional for the precision 1/σ2 is then

G(aσ2 , bσ2)
∏

[ab]∈S(T)

G

(
D/2 + 1,

||xa − xb||2
2(tb − ta)

)
, (4.53)

where || · || denotes Euclidean distance.

Pitman-Yor hyperparameters, θ and α. We use slice sampling [Neal, 2003b]

to sample θ and α. We reparameterize in terms of the logarithm of θ and the

logit of α to extend the domain to the whole real line. The terms required to

calculate the conditional probability are those in Equations 4.23 and 4.25.

4.6.2 Greedy Bayesian EM algorithm

As an alternative to MCMC here we use a Bayesian EM algorithm to approximate

the marginal likelihood for a given tree structure, which is then used to drive a

greedy search over tree structures. This algorithm is presented in detail for both

the DDT and PYDT in Chapter 7.

4.6.3 Likelihood models

Connecting our PYDT module to different likelihood models is straightforward:

we use a Gaussian observation model and a probit model for binary vectors.

The MCMC algorithm slice samples auxiliary variables and the EM algorithm

uses EP [Minka, 2001b] on the probit factor, implemented using the runtime

component of the Infer.NET framework Minka et al. [2010].

4.7 Results

We present results on synthetic and real world data, both continuous and binary.
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Figure 4.9: Optimal trees learnt by the greedy EM algorithm for the DDT and
PYDT on a synethic dataset with D = 2, N = 100.

4.7.1 Synthetic data

We first compare the PYDT to the DDT on a simple synthetic dataset with

D = 2, N = 100, sampled from the density

f(x, y) =
1

4

∑
x̄∈{−1,1}

∑
ȳ∈{−1,1}

N(x; x̄, 1/8)N(y; ȳ, 1/8)

The optimal trees learnt by 100 iterations of the greedy EM algorithm are shown

in Figure 4.9. While the DDT is forced to arbitrarily choose a binary branching

structure over the four equi-distant clusters, the PYDT is able to represent the

more parsimonious solution that the four clusters are equally dependent. Both

models find the fine detail of the individual cluster samples which may be undesir-

able; investigating whether learning a noise model for the observations alleviates

this problem is a subject of future work.

4.7.2 Density modeling

In Adams et al. [2008] the DDT was shown to be an excellent density model on a

D = 10, N = 228 dataset of macaque skull measurements, outperforming a kernel
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time/sec time/sec time/sec

Figure 4.10: Density modelling of the D = 10, N = 200 macaque skull mea-
surement dataset of Adams et al. [2008]. Top: Improvement in test predictive
likelihood compared to a kernel density estimate. Bottom: Marginal likelihood
of current tree. The shared x-axis is computation time in seconds.

density and Dirichlet process mixture of Gaussians, and sometimes the Gaussian

process density sampler proposed in that paper. We compare the PYDT to the

DDT on the same dataset, using the same data preprocessing and same three

train test splits (Ntrain = 200, Ntest = 28) as Adams et al. [2008]. The perfor-

mance using the MCMC sampler is shown in Figure 4.10. The PYDT finds trees

with higher marginal likelihood than the DDT, which corresponds to a moder-

ate improvement in predictive performance. The posterior hyperparameters were

reasonably consistent across the three train/test splits, with θ = 2.3 ± 0.4 and

α = 0.23 + 0.08 averaged over the last 100 samples for the first training split for

example. Inference in the PYDT is actually slightly more efficient computation-

ally than in the DDT because on average the smaller number of internal nodes

reduces the cost of belief propagation over the divergence locations, which is the

bottleneck of the algorithm (being a subroutine of the tree search procedure).

4.7.3 Binary example

To demonstrate the use of an alternative observation model we use a probit

observation model in each dimension to model 102-dimensional binary feature

vectors relating to attributes (e.g. being warm-blooded, having two legs) of 33

animal species from Tenenbaum & Kemp [2008]. The MAP tree structure learnt

using EM, as shown in Figure 4.11, is intuitive, with subtrees corresponding to
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land mammals, aquatic mammals, reptiles, birds, and insects (shown by colour

coding). Note that penguins cluster with aquatic species rather than birds, which

is not surprising since the data includes attributes such as “swims”, “flies” and

“lives in water”.

4.8 Conclusion

We have introduced the Pitman-Yor Diffusion Tree, a Bayesian nonparametric

prior over tree structures with arbitrary branching structure at each branch point.

We have shown the PYDT defines an infinitely exchangeable distribution over

data points. We demonstrated an MCMC sampler and Bayesian EM with greedy

search, both using message passing on the tree structure. In ongoing work we are

investigating more advanced MCMC methods. Quantitatively we have shown a

modest improvement relative to the DDT on a density estimation task. However,

we see improved interpretability as the key benefit of removing the restriction to

binary trees, especially since hierarchical clustering is typically used as a data

exploration tool. Qualitatively, we have shown the PYDT can find simpler, more

interpretable representations of data than the DDT.
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Figure 4.11: Tree structure learnt for the animals dataset of Tenenbaum & Kemp
[2008]. Contrast this to Figure 7.6 which shows the solution under the DDT.
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Chapter 5

Background: Message passing

algorithms

In this chapter we give some background on message passing algorithms to set

the scene for the novel algorithm introduced in Chapter 6. Hopefully this will

also serve as a useful reference for practitioners wishing to use these methods.

While the methods and results presented in this chapter have been available in

the literature for some years, there has been little attempt to provide a coherent

review.

5.1 Factor graphs

In fully Bayesian inference no distinction is made between latent variables and

model parameters. Both are unknown quantities whose posterior distribution

given data is of interest. Our aim is to approximate some distribution p(x),

represented as a factor graph p(x) = 1
Z
f(x) = 1

Z

∏
a fa(xa) where factor fa is a

function of all x ∈ xa. Note that p(x) might be a conditional distribution, i.e.

p(x) = p(x|D) where D is some observed data. The factor graph for a specific

simple example:

f(x, y1, y2) = p0(x)f1(x, y1)f2(x, y2) (5.1)
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Figure 5.1: The factor graph for the simple model in Equation 5.1. Circles denote
random variables and squares denote factors. Factors are connected by edges to
variables on which they have a function dependence.

is shown in Figure 5.1. Circles denote random variables and squares denote

factors. A factor fa is connected by an edge to variable xi if xi ∈ xa, i.e. if fa is a

function of xi. Although simple, this factor graph has the structure of many useful

models, for example Gaussian Process regression [Rasmussen & Williams, 2006]

would have p0(x) = N(x; 0,K) and, fi(x, yi) = N(yi;xi, σ
2) where x ∈ RN is the

latent function evaluated at the N training points, yi ∈ R are the observations,

K is the Gram matrix and σ2 is the noise variance.

5.2 Belief propagation/Sum-product algorithm

Given a factor graph representation of a model, p(x) we typically want to com-

pute either marginal distributions of some x ∈ x or calculate the partition func-

tion/marginal likelihood, Z =
∫
f(x)dx. For tree structured models with ap-

propriate functional forms (e.g. purely discrete or Gaussian models), both these

objectives can be achieved efficiently using the sum product algorithm, also known

as belief propagation [Pearl & Shafer, 1988] (the sum-product algorithm can be

viewed as somewhat more general than BP as it operates on the factor graph it-

self, but we will refer to them interchangeably). Belief propagation (BP) involves

propagating “messages” (distributions which may or may not be normalised)

across the factor graph. From variable xi to factor fa we send the message

mi→a(xi) =
∏

b∈ne(i)¬a

mb→i(xi) (5.2)
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where ne(i) denotes the neighbours of i, and ¬a denotes exclusion of a. From

factor fa to variable xi the message is

ma→i(xi) =

∫
fa(xa)

∏
j∈ne(a)¬i

[mj→a(xj)dxj] (5.3)

For a tree structured factor graph one can think of ma→i(xi) as representing our

belief about variable xi conditional on the information in the subgraph attached

to factor fa. It is then intuitively reasonably that we obtain the marginal dis-

tribution for xi by multiplying together all the independent belief contributions

from each subgraph attached to xi:

qi(xi) =
∏

b∈ne(i)

mb→i(xi) (5.4)

This explains why BP is only exact for tree structured graphs: on graphs with

cycles the belief messages sent from each factor to xi are not in general indepen-

dent.

The BP equations can look quite intimidating but should not be: they follow

from the basic rules of probability. Consider for example the factor graph in

Figure 5.1. The message from p0 to x is simply mp0→x(x) = p0(x) itself, since

p0 depends on no other variables, i.e. ne(p0)¬a = ∅. The message from x to

f1 is simply mx→f1(x) = mp0→x(x)mf1→x(x), and from f1 to x is mf1→x(x) =∫
f1(x, y1)my1→f1(y1)dy1. In the case of observed y1 we can think of my1→f1(y1)

as being a point mass, δ(y1 − yobs
1 ), so the message to x will simplify:

mf1→x(x) =

∫
f1(x, y1)my1→f1(y1)dy1

= f1(x, yobs
1 ) (5.5)

We see that for typical factor graphs used in probabilistic modelling the BP

messages are actually quite simple.
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5.3 Exponential family distributions

It may seem confusing that the messages are functions of random variables: how

can we represent the infinite degrees of freedom of a function algorithmically?

In practice one chooses models such that the messages have convenient para-

metric forms, typically being distributions in the exponential family, for example

Gaussian or discrete distributions, although there are exceptions (see for example

Sudderth et al. [2003] where mixtures of Gaussians are used). An exponential

family distribution is one that can be written as

f(x;φ) = exp(φTu(x)− κ(φ)), (5.6)

where u(·) is a vector of sufficient statistics, φ is the vector of natural parameters

and κ(·) is the log partition function. It is straightforward to derive the expected

sufficient statistics (also sometimes referred to as the “moments” by analogy to

the Gaussian case) as

〈u(x)〉f = κ′(φ), (5.7)

where κ′(·) is the first derivative of κ(·). Exponential family distributions arise

naturally as the maximum entropy distributions under constraints on the mo-

ments, and many common distributions used in statistical modelling, such as

Gaussian (u(x) = [x,−1
2
x2]T ), Gamma (u(x) = [x, log x]T ), and Beta (u(x) =

[log x, log (1− x)]T ), are in the exponential family. Others however are not: com-

mon examples are the student-t and log-normal distributions. A key advantage

of using exponential families is the property of closure under multiplication:

f(x;φ1)f(x;φ2) = exp (κ(φ1 + φ2)− κ(φ1)− κ(φ2))f(x;φ1 + φ2) (5.8)

If the messages used in BP are all of the same exponential family form then cal-

culating the variable to factor message in Equation 5.2 simply involves summing

natural parameters.
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5.4 Limitations of BP

Two main problems can arise which prevent the use of BP. Firstly, the graph may

have cycles. In this case the exact junction tree algorithm [Jensen et al., 1994]

may still be applicable, but has run-time exponential in the treewidth of the graph.

The treewidth is the number of largest number of graph nodes mapped into a

single node in the junction tree. An alternative is loopy belief propagation [Frey

& MacKay, 1998], where the standard BP equations are simply iterated in the

hope of achieving a reasonable solution. It has been shown that the fixed points of

loopy BP correspond to saddle points of the Bethe free energy, an approximation

to the true Gibbs free energy which ignores terms resulting from cycles [Yedidia

et al., 2003]. Loopy BP is not guaranteed to converge, but has been applied with

great success for certain problems such as decoding turbocodes [Berrou et al.,

1993]. Guaranteed convergent alternatives are available [Yuille, 2002] but are

typically much slower.

Secondly, the messages sent to a variable may not permit straightforward

multiplication, and even if they do, the integration required in Equation 5.3

may be challenging. If the messages are not of exponential family form, or are

from different exponential families, then the variable to factor messages will be

an inconvenient form and for certain models the complexity of the messages can

grow exponentially in the number of iterations. This problem motivates somehow

constraining all messages to a variable to have the same (exponential family)

form. This is the idea behind Assumed Density Filtering [Boyen & Koller, 1998;

Lauritzen, 1992; Maybeck, 1979] and Expectation Propagation [Minka, 2001c].

5.5 Expectation Propagation

Expectation Propagation (EP) can be motivated in a number of ways. Follow-

ing our narrative so far, it can be thought of as a somehow “optimal” way to

approximate a message of arbitrary functional form using a distribution from a

parametric family of our choosing. To explain in what way this approximate mes-

sage will be optimal we need to introduce the Kullback—Leibler (KL) divergence

79



between two distributions p and q:

KL(p||q) =

∫
p(x) log

p(x)

q(x)
dx. (5.9)

The KL divergence is non-negative and zero if and only if p = q. EP can be

thought of as attempting to approximately minimise the global KL divergence

KL(p||q) where p(x) is the true posterior and q(x) is some approximation to p(x)1.

Since our model is a product of factors p(x) = 1
Z

∏
a fa(xa) the approximation will

be a product of approximations to these factors: q(x) = 1
Z

∏
a f̃a(xa). Minimising

the KL divergence can itself be motivated from a decision theoretic perspective:

it is equivalent to finding the approximate posterior, q which minimises the Bayes’

risk where the “action” is estimating the posterior density of x and the loss is the

difference in log densities between the truth and the approximation. As discussed

below in Section 5.12, EP can also be derived as fixed point scheme designed to

find stationary points of the Bethe free energy under relaxed constraints relative

to loopy BP [Heskes & Zoeter, 2002]. The global KL divergence KL(p||q) can be

written

KL

(∏
a

fa(xa)
∣∣∣∣∣∣∏

a

f̃a(xa)

)
. (5.10)

Minimising this functional with respect to all f̃a is intractable for most models

of interest. Instead for each factor in turn EP aims to find a KL minimising

approximation to fa(xa) under the assumption that the approximation to the

other factors is good, i.e. that
∏

b 6=a f̃b(xb) ≈
∏

b 6=a fb(xb). This gives the following

update:

f̃a(xa) = arg min
s∈Ea

KL

(
fa(xa)

∏
b 6=a

f̃b(xb)

∣∣∣∣∣
∣∣∣∣∣s(xa)∏

b 6=a

f̃b(xb)

)
, (5.11)

where Ea denotes the space of exponential family distributions we have chosen

for factor a. We now wish to translate the update in Equation 5.11 into message

1It is a common misconception that EP actually minimises the global KL: this is only a
motivation for the algorithm, EP does not in general achieve this goal.
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passing formalism. We will assume a fully factorised posterior approximation

q(x) ∝∏i qi(xi) so that each approximate factor will also factorise:

f̃a(xa) =
∏

i∈ne(a)

ma→i(xi). (5.12)

The variable to factor messages are calculated exactly as for BP (see Equa-

tion 5.2):

mi→a(xi) =
∏
b 6=a

mb→i(xi). (5.13)

We can now write the product of approximate factors as∏
b 6=a

f̃b(xb) =
∏
b6=a

∏
i∈ne(a)

ma→i(xi) =
∏

i∈ne(a)

mi→a(xi) (5.14)

Substituting into Equation 5.11 we have

∏
i∈ne(a)

ma→i(xi) = arg min
s∈Ea

KL

fa(xa) ∏
i∈ne(a)

mi→a(xi)

∣∣∣∣∣
∣∣∣∣∣ ∏
i∈ne(a)

si(xi)mi→a(xi)


(5.15)

where s(xa) is now constrained to be fully factorised, i.e. s(xa) =
∏

i∈ne(a) si(xi).

This optimisation is in fact independent for each message ma→i(xi) so we have

ma→i(xi) = arg min
si∈Ei

KL

∫ fa(xa)
∏

j∈ne(a)

mj→a(xj)dxj

∣∣∣∣∣
∣∣∣∣∣si(xi)mi→a(xi)

 .

(5.16)
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where Ei is the exponential family chosen for variable i. Finally it should be clear

that we can write Equation 5.16 as

ma→i(xi) =
1

mi→a(xi)
arg min

si∈Ei
KL

fa(xa) ∏
j∈ne(a)

mj→a(xj)

∣∣∣∣∣
∣∣∣∣∣si(xi)


=

1

mi→a(xi)
proj

∫ fa(xa)
∏

j∈ne(a)

mj→a(xj)dxa¬i

 , (5.17)

where we have introduced the proj operator which projects a distribution onto

the closest exponential family distribution in terms of KL divergence. It is

straightforward to show that this is found by moment matching, i.e. if s(x) =

exp {u(x)Tφ− κ(φ)} then choose φ such that

〈ul(x)〉s = 〈ul(x)fa(xa)〉∏j∈ne(a) mj→a(xj), (5.18)

for each l. Equation 5.17 reduces to the standard BP message in the case where

the BP message would have been in Ei, the chosen exponential family for xi.

5.5.1 A note on the convergence of EP

We know that BP is guaranteed to converge on tree structured graphical mod-

els. Expectation propagation is a generalisation of BP, for which no convergence

guarantees are known. Intuitively, if the graph is tree structured, and the factors

requiring approximation are in some sense “close” to conjugate, then there should

be a good chance that EP will converge. Here we formalise in what sense the fac-

tors must be close to conjugate to at least give a guarantee of local convergence,

i.e. that given an initialisation sufficiently close to the optimum, the algorithm

will converge.

We will consider the very simple factor graph model

f(x) = f1(x)f2(x), (5.19)

but note that it is possible to extend this idea to more general models. We will

work in the exponential family q(x|θ) = exp (θTu(x)− κ(θ)), where u(x) ∈ Rd
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is the vector of sufficient statistics. Let the messages from f1 and f2 to x have

natural parameters m1 and m2 respectively. The posterior has natural parameter

θ = m1+m2. Now consider the EP update for m1. Since dividing two exponential

family distributions corresponds to subtracting their natural parameters, from

Equation 5.17 the new value of m1 is given by

m′1 = proj
[
f1(x)em

T
2 u(x)−κ(m2)

]
−m2, (5.20)

where by a slight abuse of notation we now consider the output of the proj oper-

ator to be the natural parameters of the distribution. Let

g(φ) =

∫
u(x)q(x|φ)dx = 〈u(x)〉φ = κ′(φ), (5.21)

be the bijective function mapping natural parameters to sufficient statistics. The

projection operator can be written as follows:

proj [F (x)] = g−1

(∫
u(x)F (x)dx∫
F (x)dx

)
, (5.22)

for some arbitrary function, F (.). The update for m1 can be written

m′1 = g−1

(∫
u(x)F̃1(x,m2)dx

)
−m2 =: G1(m2) (5.23)

where G1(m2) is the function mapping m2 to the new value of m1 and we have

defined

F1(x,m2) := f1(x)q(x|m2) (5.24)

= f1(x)em
T
2 u(x)−κ(m2)

F̃1(x,m2) :=
F1(x,m2)∫
F1(x,m2)dx

. (5.25)

Analogously we can write down the update for m2:

m′2 = G2(m′1) := g−1

(∫
u(x)F2(x,m′1)dx∫
F2(x,m1)dx

)
−m′1, (5.26)

83



where F2(x,m1) = f2(x)q(x|m1). A full EP iteration can be thought of as the

following mapping of m2:

m′2 = G2(G1(m2)) =: G(m2). (5.27)

To check if G(.) : Rd → Rd will converge at least locally we can look at the Taylor

expansion around a fixed point, m∗, where of course m∗ = G(m∗). Let mt be the

value of m2 at iteration t and εt := mt −m∗ be the error. Then

mt+1 := G(mt) = G(m∗) +G′(m∗)εt +O(|εt|2)

≈ m∗ +G′(m∗)εt

⇒ εt+1 = mt+1 −m∗ = G′(m∗)εt +O(|εt|2) (5.28)

Clearly if the determinant of the Jacbobian, |G′(.)| < 1 then limt→∞ ε
t = 0, so

we will consider when this is the case. Note that convergence in some other norm

could also be used [Wang & Titterington, 2006]. We have

G′(m2) = G′1(m2)G′2(G1(m2))⇒ |G′(m2)| = |G′1(m2)||G′2(G1(m2))| (5.29)

so we can attempt to show that |G′1(.)| < 1 and |G′2(.)| < 1. Let

h(m2) =

∫
u(x)F̃1(x,m2)dx = 〈u(x)〉F̃1

, (5.30)

so that we can write

G1(m2) = g−1 (h(m2))−m2

⇒ G′1(m2) = g′(G1(m2) +m2)−1h′(m2)− I, (5.31)

where we have used that df−1(x)
dx

= f ′(f−1(y))−1. The updated natural parameters

for the posterior are θ′ := G1(m2) + m2 = m′1 + m2, so we have G′1(m2) =

g′(θ′)−1h′(m2)− I. Using the fact that

∂F1

∂m2

= (u(x)− κ′(m2))F1(x,m2), (5.32)
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it is straightforward to show that

h′(m2) =

∫
u(x)u(x)T F̃1(x,m2)dx− h(m2)h(m2)T , (5.33)

which is readily interpreted as the covariance of u(x) under F̃ . Now

g′(θ′) = κ′′(θ′) = cov[u(x)|θ′]

=

∫
u(x)u(x)T eθ

′Tu(x)−κ(θ′)dx− 〈u(x)|θ′〉〈u(x)T |θ′〉 (5.34)

where

〈u(x)|θ′〉 =

∫
u(x)eθ

′Tu(x)−κ(θ′)dx (5.35)

This is equal to h(m2) for θ′ = m′1 + m2 since this was the criteria for choosing

m′1. We now have

G′1(m2) = cov[u(x)|θ′]−1cov[u(x)|F̃1]− I (5.36)

We are interested in the determinant of this expression, which can be written

|G′1(m2)| =

∣∣∣cov(u(x)|F̃1)− cov(u(x)|θ′)
∣∣∣

|cov(u(x)|θ′)| (5.37)

by a simple manipulation. This quantity can be thought of as a measure of

how well F̃1(.,m2) is approximated by the moment matched exponential family

q(x; θ). If f1 is conjugate then this measure will be zero, otherwise it will be

positive. For a Gaussian approximation, this quantity will be a function of the

skew and kurtosis of F̃1. We are interested in whether this quantity is bounded

above by 1, in other words does it hold that∣∣∣cov[u(x)|F̃1]− cov[u(x)|θ′]
∣∣∣ ≤ |cov[u(x)|θ′]| (5.38)

Consider a univariate posterior which we will attempt to approximate using a
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Gaussian. Define the skew, s as

s =
〈(x−m)3〉

v
3
2

(5.39)

and the kurtosis, k as

k =
〈(x−m)4〉

v2
− 3, (5.40)

where the mean, m = 〈x〉 and the variance, v = 〈x2〉 −m2. Note that k = s = 0

for a Gaussian distribution. For the Gaussian distribution, u(x) = [x, −1
2
x2]T

it is straightforward (if tedious) to show that

cov[u(x)|F̃1] =

[
v −1

2
(v

3
2 s+ 2mv)

. 1
4
(kv2 + 2v2 + 4v

3
2 sm+ 4m2v)

]
(5.41)

where . simply denotes that this element is equal to the other cross term by

symmetry of the matrix. Clearly setting k = s = 0 we have

cov[u(x)|θ′] =

[
v −mv
. 1

2
v2 +m2v

]
(5.42)

So

cov(u(x)|F̃1)− cov[u(x)|θ′] =

[
0 −1

2
v

3
2 s

. 1
4
kv2 + v

3
2 sm

]
(5.43)

Finally ∣∣∣cov[u(x)|F̃1]− cov[u(x)|θ′]
∣∣∣ = −1

4
v3s2 (5.44)

and

|cov[u(x)|θ′]| = 1

2
v3 (5.45)
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so

|G′1(m2)| = −1

2
s2 (5.46)

Thus our requirement that |G′1(m2)| < 1 becomes a simple condition on the

skew |s| <
√

2 of F̃1, the normalised product of the true factor f1 and the other

approximate factors. Unfortunately in practice checking this condition is difficult,

but it does give quantitative foundation to the qualitative statement that EP

tends to converge better for factors it can approximate well. Note that if we have

|s| >
√

2 we cannot say that the algorithm will diverge, only that we cannot

guarantee convergence.

5.6 α-divergences/Fractional BP/Power EP

It is possible to generalise EP to α-divergence message passing [Minka, 2005],

where instead of locally minimising the KL divergence we minimise the α-divergence:

Dα(p||q) =
1

α(1− α)

∫
[1− p(x)αq(x)(1−α)]dx. (5.47)

The updates are then as follows, analogously to EP:

f̃a(xa) := arg min
s
Dα(fa(xa)mx→a(xa)||s(xa)mx→a(xa)). (5.48)

We will not discuss general α-divergence message passing in detail here, but

instead mention it as a bridge from EP to variational Bayes. Taking the limit

α → 0 gives the KL divergence used in EP: KL(p||q). Taking the limit α → 1

gives the KL divergence in the other direction, KL(q||p), which is the divergence

measure minimised by Variational Bayes and Variational Message Passing (see

below), and is the only setting of α for which iteratively minimising the local

divergence exactly minimises the global divergence. Related methods are Power

EP [Minka, 2004], an alternative algorithm to minimise α-divergence with slightly

different messages but the same fixed points as Equation 5.48, and Fractional

BP [Wiegerinck & Heskes, 2002], the equivalent extension of standard BP. These
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ideas motivate hybrid EP/VB algorithms, which have been successfully applied

in various models [Ding et al., 2010; Guiver & Snelson, 2009; Stern et al., 2009]

and an example of which is demonstrated in Chapter 7.

5.7 Variational Bayes

As mentioned above, α-divergence message passing with α = 0 corresponds to

the variational Bayes (VB) approximation [Attias, 2000; Beal & Ghahramani,

2006]. For completeness, and because it is normally presented using somewhat

different notation, we review the standard derivation of VB here. Recall that the

normalised distribution of interest is p(x) = f(x)
Z

. We use Jensen’s inequality to

lower bound the marginal likelihood:

logZ = log

∫
x

f(x)dx = log

∫
x

q(x)
f(x)

q(x)
dx

≥
∫
x

q(x) log
f(x)

q(x)
dx =: F[q]. (5.49)

We can ask what error we are making between the true Z and the lower bound

(known as the free energy) F[q]:

logZ − F[q] =

∫
x

q(x) log
q(x)

p(x)
dx = KL(q||p). (5.50)

In general we can evaluate F[q] but not the KL itself, since this would require

knowing Z. By maximising the lower bound F[q] we will minimise the KL diver-

gence

KL(q||p) =

∫
q(x) log

q(x)

p(x)
dx = −H[q(x)]−

∫
q(x) log p(x)dx, (5.51)

where H[q(x)] = −
∫
q(x) log q(x)dx is the entropy. Recall that the KL diver-

gence is strictly positive for q 6= p and equal to 0 only for q = p. As a result finding

the general q which minimises the KL divergence is no easier than the original

inference task, which we assume is intractable. The usual strategy therefore is to

place simplifying constraints on q, the most popular, due to its simplicity, being
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the mean field approximation.

5.8 Mean-field approximation

The mean-field approximation assumes a fully-factorised variational posterior

q(x) =
∏
i

qi(xi), (5.52)

where qi(xi) is an approximation to the marginal distribution of xi (note however

xi might in fact be vector valued, e.g. with multivariate normal qi). The varia-

tional approximation q(x) is chosen to minimise the Kullback-Leibler divergence

KL(q||p) (or equivalently maximise F[q]). It can be shown [Attias, 2000] that

if the functions qi(xi) are unconstrained then minimising this functional can be

achieved by coordinate descent, setting

qi(xi) := exp

∫
log p(x)

∏
j 6=i

qj(xj)dxj

= exp〈log p(x)〉¬qi(xi), (5.53)

iteratively for each i, where 〈...〉¬qi(xi) implies marginalisation of all variables

except xi.

5.9 Variational Message Passing on factor graphs

Variational Message Passing [Winn & Bishop, 2006] is an efficient algorithmic

implementation of the mean-field approximation which leverages the fact that

the mean-field updates only require local operations on the factor graph. VMP

was originally presented as operating on the directed acyclic graph of a Bayesian

network, but here we describe VMP operating directly on the factor graph to

emphasise the similarity with BP and EP. As a result of the mean field ap-

proximation, the variational distribution q(x) factorises into approximate factors

f̃a(xa). As a result of the fully factorised approximation, the approximate factors
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themselves factorise into messages, i.e.

f̃a(xa) =
∏
xi∈xa

ma→i(xi), (5.54)

where the message from factor a to variable i is

ma→i(xi) = exp〈log fa(xa)〉¬qi(xi)

= exp

∫
log fa(xa)

∏
j∈ne(a)¬i

qj(xj)dxj. (5.55)

It is instructive to note the similarity of this message to that for BP:

mBP
a→i(xi) =

∫
fa(xa)

∏
j∈ne(a)¬i

mj→a(xj)dxj. (5.56)

There are two differences: firstly VMP involves integrating with respect to the log-

arithm of the factor and then exponentiating the resulting function, and secondly

the messages from variables to factors contain slightly different information. In

VMP the message from variable i to factor a is the current variational posterior

of xi, denoted qi(xi), i.e.

mi→a(xi) = qi(xi) =
∏

a∈ne(i)

ma→i(xi). (5.57)

Contrast this to the variable to factor message in BP which excludes the contri-

bution from this factor, i.e. mi→a(xi) = qi(xi)/ma→i(xi). This means that the

effective state (and therefore memory requirement) of EP/BP is “larger” than

for VMP since the later only requires all current marginals q rather than all the

messages.
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5.10 Conditional conjugacy

Under what conditions will the message in Equation 5.55 be an exponential family

distribution? In other words when do we have:

ma→i(xi) = exp

∫
log fa(xa)

∏
j∈ne(a)¬i

qj(xj)dxj

= exp (u(xi)
Tφ− const.). (5.58)

If this is the case then it must be possible to write

log fa(xa) = u(xi)
Tg(x¬ia ) + z(x¬ia ) (5.59)

where x¬ia denotes the variables in xa excluding xi. In other words the log factor

must be a linear combination of the sufficient statistics of the appropriate expo-

nential family distribution. If all the factors connected to variable xi have this

form with respect to xi then the update for xi will be straightforward. If this is

the case for all variables then we consider this model to have “conditional conju-

gacy”, which is considerably less restrictive than the standard notion of conjugacy.

Conditional conjugacy says that conditional on a variable’s Markov blanket (i.e.

variables with which it shares factors) its distribution is of a tractable exponential

family form. This requires the log factors to be linear functions of the sufficient

statistics of the exponential family distributions used in the variational posterior.

5.11 Deterministic factors in VMP

Deterministic factors require careful handling in VMP. Consider a factor fa(x, y) =

δ(y− f(x)) where the current variational posteriors on x and y are q(x) and q(y)

respectively. Naively applying the VMP update rules and taking care with limits
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Figure 5.2: The factor graph for a simple model including a deterministic factor.

the message to y will be:

mf→y(y) = exp

∫
log δ(y − f(x))q(x)dx

= lim
v→0

exp

∫
logN(y; f(x), v)q(x)dx

= lim
v→0

N(y; 〈f(x)〉, v)

= δ(y − 〈f(x)〉) (5.60)

where we have represented the delta function as δ(x) = limv→0N(x; 0, v) and

used the continuity of exp and log to exchange the order of operations. Thus

the message to y is a point mass, and we have lost all uncertainty, which is

clearly underisable when our aim was to perform Bayesian inference. The same

phenomenon occurs for the message to x:

mf→x(x) = exp

∫
log δ(y − f(x))q(y)dy

= lim
v→0

exp

∫
logN(f(x); y, v)q(y)dy

= lim
v→0

N(f(x); 〈y〉, v)

= δ(f(x)− 〈y〉) (5.61)

= δ(x− f−1(〈y〉)) (5.62)

As a result deterministic factors are best handled in a slightly non-standard way.

Consider the following model: p(x, y, z) = δ(y − f(x))g(y, z) (as shown in Fig-

ure 5.2) with current variational posteriors on x and z being q(x) and q(z) re-

spectively.

The messages we would like to send to x and z are given by marginalising away

y to give the model: g(f(x), z). We assume that the “conditional conjugacy”
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property holds, which implies that we can write the log factor as

log g(y, z) = (a + Auy(y))T (b + Buz(z)), (5.63)

where a,b are vectors and A,B are matrices. This factor is now stochastic so

the standard messages have no pathological behaviour:

mf→x(x) ∝ exp

∫
log g(f(x), z)q(z)dz (5.64)

∝ exp
{
uy(f(x))TAT (b + B〈uz(z)〉)

}
mf→z(z) ∝ exp

∫
log g(f(x), z)q(x)dx

∝ exp
{

(a + A〈uy(f(x))〉q(x))
TBuz(z)

}
(5.65)

Can we handle the deterministic factor δ(y − f(x)) in a way that will implicitly

result in the same messages being sent to x and z as marginalising out y? Instead

of representing the approximate posterior on y as a true marginal it will be a

“pseudo-marginal”. The message from f to y simply must have the moments of

f(x). Write the exponential family distribution for y as

q(y;φ) = exp (uy(y)Tφ− κ(φ)) (5.66)

where uy(y) and φ are the sufficient statistics and natural parameters of the

exponential family respectively (note that requiring an exponential family distri-

bution for y is an extra constraint that not using the marginalised representation

introduces). We find φ by requiring that

〈uy(y)〉q(y;φ) = 〈uy(f(x))〉q(x) (5.67)

This message is then used in calculating the message to z, resulting in the same
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message as for the marginalised representation:

mf→z(z) ∝ exp

∫
q(y;φ) log g(y, z)dy

∝ exp
{

(a + A〈uy(y)〉q(y;φ))
TBuz(z)

}
∝ exp

{
(a + A〈uy(f(x))〉q(x))

TBuz(z)
}

(5.68)

which is the same as Equation 5.65. The message from g to y is the standard

VMP message:

mg→y(y) = exp

∫
log g(y, z)q(z)dz (5.69)

However, the message from y to f is non-standard because it excludes the con-

tribution of the message mf→y. The message from f to x is then calculated

as

mf→x(f(x)) = f̂(x) :=

∫
δ(y − f(x))mg→y(y)dy

= exp

∫
log g(f(x), z)q(z)dz (5.70)

which is the same as the message for the marginalised representation (Equa-

tion 5.64). It is instructive to consider some simple examples.

A very simple example. Consider the model p(x, y) = δ(y − 2x)N(y; 1, 1).

Clearly it is trivial to marginalise out y to find that the true posterior for x is

N(x; 1/2, 1/4). However, we would like to be able to calculate this answer using

VMP, without having to collapse the model manually. The message from the

normal factor to y is simply N(y; 1, 1) itself. The message from y to x is calculated

as mN→y(f(x)) = N(2x; 1, 1) which directly gives the correct posterior.

The product factor. A slightly more interesting case, which is of practical

relevance, is the product factor, δ(y − ab) where we assume Gaussian variational
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a b

f(y, a, b) = δ(y − ab)

Figure 5.3: The product factor.

posteriors on a and b (Figure 5.3). The message from f to a is:

mf→a(a) =

∫
my→f (ab)qb(b)db

=

∫
N(ab,my, vy)N(b,mb, vb)db

∝ N

(
a;
mbmy

〈b2〉 ,
vy
〈b2〉

)
(5.71)

where my→f (y) =
∏

b∈ne(y)¬f mfb→y(y) and 〈b2〉 = m2
b + vb. The message to b

should be clear from the symmetry of a and b. Using Equation 5.67 the message

to y from f is

mf→y(y) = N(y;mamb, 〈a2〉〈b2〉 −m2
am

2
b) (5.72)

By specific handling of the deterministic factor f and pseudomarginal y we are

able to achieve the same messages as the marginalised representation. This lets

us keep uncertainty in our estimates which is fundamental to Bayesian inference,

whilst allowing us to conveniently connect a variety of deterministic and stochastic

factors in interesting and useful combinations. Importantly the variational Bayes

guarantees still hold: we still have a lower bound on the marginal likelihood which

increases (or at least does not decrease) every iteration.

5.12 Further topics

Exclusive vs. inclusive KL. The different characteristics of EP and VMP

can be explained in terms of the particular KL divergence each algorithm at-
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tempts to minimise. EP minimises KL(p||q) =
∫
p(x) log p(x)/q(x)dx, which is

known as an “inclusive” divergence since the approximate q will attempt to in-

clude most of the mass of the true distribution p. This can be seen from the KL

divergence: q will be severely penalised anywhere p(x) is large and q(x) is small.

In contrast, VB minimises KL(q||p) =
∫
q(x) log q(x)/p(x)dx, an “exclusive” di-

vergence which most heavily penalises regions where p(x) is small and q(x) is not.

This behaviour is most pronounced with multimodal p(x), where EP will tend to

spread the mass of q(x) over multiple modes, whereas VB will focus on fitting a

single mode (hopefully the largest, although each mode will typically represent a

different local optimum). As a result VMP can often be more robust, since EP’s

attempt to cover multiple modes can result in the variance of the approximation

diverging [Stern et al., 2009]. VMP is often found to severely underestimate vari-

ances (although there are counterexamples, see for example Turner et al. [2008]).

Thus the choice of algorithm must typically be made depending on the model, or

hybrid approaches can be taken [Ding et al., 2010; Guiver & Snelson, 2009; Qi

et al., 2005; Stern et al., 2009].

Damping. Although it has been proposed that EP always converges for log

concave distributions p(x), there is no formal proof even in this case, and no guar-

antees at all in general. For complex models, especially multimodal ones, EP will

often fail to converge, either entering a limit cycle or diverging. This behaviour

can sometimes be alleviated by damping, which increases the basin of attraction

of the stable solutions. Instead of simply using the message mnew
a→i(xi) we use a

convex combination with the previous message, i.e. mnew
a→i(xi)

(1−δ)mold
a→i(xi)

δ where

δ ∈ [0, 1] is the damping factor. The fixed points of the algorithm are unchanged,

but there is typically some cost in terms of convergence rate.

Scheduling. For approximate message passing algorithms the order of message

updates, known as the schedule, is very important for three reasons. Firstly,

algorithms which are not guaranteed to converge are more likely to converge with

a better schedule. Secondly, the rate of convergence is greatly effected by the

schedule. Finally in situations where there are multiple local optima/fixed points

the schedule can effect which optimum is reached. The first two issues are in
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fact tightly coupled: a schedule which converges faster is typically more robust

as well. While various methods for choosing schedules for specific models have

been proposed [Elidan et al., 2006; Sutton & McCallum, 2007; Vila Casado et al.,

2007], finding good global schedules in the general case remains an open problem.

EP energy function. Although EP was originally motivated from an algorith-

mic standpoint, it corresponds to finding fixed points of the Bethe free energy

under the weak constraint of having consistent moments (sufficient statistics)

rather than the strong constraint of consistent marginals implied by BP [Heskes

& Zoeter, 2002; Heskes et al., 2005; Minka, 2001a]. Langragian dual theory shows

this can be equivalently be interpreted as finding saddle points of the Lagragian

objective, but unfortunately the inner optimisation is not convex. Guaranteed

convergent methods derived from this interpretation have been developed [Heskes

& Zoeter, 2002] but these double loop algorithms are typically much slower than

standard message passing EP.

Structured approximations. The methods described here have typically as-

sumed a fully factorised variational distribution q(x) but often this constraint

can be relaxed to improve inference accuracy while maintaining reasonable com-

putational tractability. A typical approach is to use tree structured variational

approximations, see for example tree structured VB [Saul & Jordan, 1996], tree

EP [Qi & Minka, 2004] and tree re-weighted BP [Wainwright et al., 2003]. More

general structured methods include Generalised BP [Yedidia et al., 2004] and

structured region graphs [Welling et al., 2005].

Connection to EM. The Expectation-Maximisation algorithm [Dempster et al.,

1977] is a popular method to marginalise (the E-step) over certain variables in a

model, and maximise (the M -step) over others. The E-step may be performed

exactly, e.g. using BP, or approximately using VB (known as “variational EM”)

or EP [Kim & Ghahramani, 2006; Minka & Lafferty, 2002]. EM arises naturally

as a special case of the VB framework by specifying a degenerate point mass

variational distribution on the variables to be maximised over.
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Statistical properties. An important property of any parameter estimator is

consistency: that the estimate converges to the “true” value in the large sample

limit. This is true for example for maximum likelihood estimators under relatively

mild regularity conditions [Wald, 1949]. In a Bayesian setting we can ask whether

the posterior concentrates to a point mass around the true value [Walker & Hjort,

2001]. For approximate inference methods, such as those described above, we can

ask two questions: does the mean of the approximate posterior converge to the

correct value, and additionally does the variance of the approximation approach

the variance of the true posterior asymptotically? Some results are known for spe-

cific models: VB applied to a mixture of multivariate normals converges locally

to the true mean but underestimates the posterior covariance [Wang & Titter-

ington, 2006]. For mixtures of known densities there have been recent theoretical

results confirming that EP does not suffer from the same problem [Titterington,

2011].

Infer.NET [Minka et al., 2010] is a probabilistic programming language which

I have been involved in developing at Microsoft Research Cambridge. A user is

able to write down a broad class of probabilistic generative models, condition on

data and automatically perform inference using EP, VMP or Gibbs sampling.
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Chapter 6

Non-conjugate Variational

Message Passing

A proportion of the work in this chapter was published in Knowles & Minka [2011].

As described in the previous chapter, Variational Message Passing (VMP) is an

algorithmic implementation of the Variational Bayes (VB) method which applies

only in the special case of conditionally conjugate exponential family models (see

Section 5.10). In this chapter we propose an extension to VMP, which we refer to

as Non-conjugate Variational Message Passing (NCVMP) which aims to alleviate

this restriction while maintaining modularity, allowing choice in how expecta-

tions are calculated, and integrating into an existing message-passing framework:

Infer.NET. We demonstrate NCVMP on logistic binary and multinomial clas-

sification. In the multinomial case we introduce a novel variational bound for

the softmax factor which is tighter than other commonly used bounds whilst

maintaining computational tractability.

Unfortunately, VMP is effectively limited to conjugate-exponential models

since otherwise the messages become exponentially more complex at each itera-

tion. In conjugate exponential models this is avoided due to the closure of expo-

nential family distributions under multiplication. There are many non-conjugate

problems which arise in Bayesian statistics, for example logistic regression or

learning the hyperparameters of a Dirichlet.

Previous work extending Variational Bayes to non-conjugate models has fo-
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cused on two aspects. The first is how to fit the variational parameters when

the VB free form updates are not viable. Various authors have used standard

numerical optimization techniques [Blei & Lafferty, 2007; Opper & Archambeau,

2009; Raiko et al., 2007], or adapted such methods to be more suitable for this

problem [Honkela et al., 2007, 2010]. A disadvantage of this approach is that the

convenient and efficient message-passing formulation is lost.

The second line of work applying VB to non-conjugate models involves deriv-

ing lower bounds to approximate the expectations required to calculate the KL

divergence. We contribute to this line of work by proposing and evaluating a new

bound for the useful softmax factor, which is tighter than other commonly used

bounds whilst maintaining computational tractability [Bouchard, 2007; Jaakkola

& Jordan, 1996; Khan et al., 2010; Marlin et al., 2011; Saul & Jordan, 1999]. We

also demonstrate, in agreement with Wand et al. [2010] and Nickisch & Rasmussen

[2008], that for univariate expectations such as required for logistic regression,

carefully designed quadrature methods can be effective.

Existing methods typically represent a compromise on modularity or perfor-

mance. To maintain modularity one is effectively constrained to use exponential

family bounds (e.g. quadratic in the Gaussian case [Bouchard, 2007; Jaakkola &

Jordan, 1996]) which we will show often gives sub-optimal performance. Methods

which uses more general bounds, e.g. Blei & Lafferty [2007], must then resort

to numerical optimisation, and sacrifice modularity. This is a particular disad-

vantage for an inference framework such as Infer.NET [Minka et al., 2010] where

we want to allow modular construction of inference algorithms from arbitrary

deterministic and stochastic factors. We propose a novel message passing al-

gorithm, which we call Non-conjugate Variational Message Passing (NCVMP),

which generalises VMP and gives a recipe for calculating messages out of any

factor. NCVMP gives much greater freedom in how expectations are taken (us-

ing bounds or quadrature) so that performance can be maintained along with

modularity.

For conditionally conjugate exponential models the messages to a particular

variable xi, will all be in the same exponential family. Thus calculating the

current approximate marginal qi(xi) simply involves summing sufficient statistics.

If, however, our model is not conjugate-exponential, there will be a variable xi
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which receives incoming messages which are in different exponential families, or

which are not even exponential family distributions at all. Thus qi(xi) will be

some more complex distribution. Computing the required expectations becomes

more involved, and worse still the complexity of the messages (e.g. the number

of possible modes) may grow exponentially per iteration.

One approach, in the spirit of Expectation Propagation and following Minka

[2005], would be to directly minimise the local exclusive KL. However, this in

general requires an inner loop to find the KL minimising message, and does not

have the attractive VMP feature of being able to connect arbitrary deterministic

and stochastic factors (see Section 5.11).

Another possibility would be to project the standard VMP message onto the

closest exponential family distribution in terms of KL divergence. From Equa-

tion 5.55 the standard VMP message from a factor a to a variable i is

ma→i(xi) = exp

∫
log fa(xa)

∏
j∈ne(a)¬i

qj(xj)dxj. (6.1)

We would then calculate an approximate message:

m̃a→i(xi) := arg min
s∈F

KL(s(xi)||ma→i(xi)), (6.2)

where F is the appropriate exponential family. There are two problems with

this approach. Firstly, it does not reach a minimum of the global KL divergence

because the procedure is not equivalent to directly minimising the local KL under

the exponential family constraint. Secondly, it is computationally demanding

since an inner loop is required in general to minimise the KL divergence in the

second step.

The outline of the chapter is as follows. Section 6.1 is the main contribution

of the chapter: the Non-conjugate VMP algorithm and its theoretical proper-

ties. Sections 6.2—6.5 describe four different applications of NCVMP: inferring

the shape of a Gamma prior, modelling heteroskedasticity using the “exp” fac-

tor, and binary logistic and multinomial softmax classification models. For the

classification models results on synthetic and standard UCI datasets are given in

Section 6.6 and some conclusions are drawn in Section 6.7.
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6.1 Algorithm and theoretical properties

In this section we give some criteria under which the algorithm was conceived. We

set up required notation and describe the algorithm, and prove some important

properties. Finally we give some intuition about what the algorithm is doing.

The approach we take aims to fulfill certain criteria:

1. provides a recipe for any factor

2. reduces to standard VMP in the case of conjugate exponential factors

3. does not require an inner loop

4. allows modular implementation and combining of deterministic and stochas-

tic factors

The key intuition behind NCVMP is to ensure the gradients of the approximate

KL divergence implied by the message match the gradients of the true KL. This

means that we will have a fixed point at the correct point in parameter space:

the algorithm will be at a fixed point if the gradient of the KL is zero. Perhaps

a more intuitive explanation is that NCVMP is iteratively approximating the

non-conjugate model by a conjugate model.

We use the following notation: variable xi has current variational posterior

qi(xi; θi), where θi is the vector of natural parameters of the exponential fam-

ily distribution qi. Each factor fa which is a neighbour of xi sends a message

ma→i(xi;φa→i) to xi, where ma→i is in the same exponential family as qi, i.e.

ma→i(xi;φ) = exp(φTu(xi)− κ(φ)) (6.3)

qi(xi; θ) = exp(θTu(xi)− κ(θ)), (6.4)

where u(·) are sufficient statistics, and κ(·) is the log partition function. We

define C(θ) as the Hessian of κ(·) evaluated at θ, i.e.

Cij(θ) =
∂2κ(θ)

∂θi∂θj
. (6.5)
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It is straightforward to show that C(θ) = cov(u(x)|θ), i.e. the covariance matrix

of the sufficient statistics under qi, so if the exponential family qi is identifiable,

C will be symmetric positive definite, and therefore invertible. The factor fa

contributes a term

Sa(θi) =

∫
qi(xi; θi)〈log fa(x)〉¬qi(xi)dxi, (6.6)

to the KL divergence, where we have only made the dependence on θi explicit:

this term is also a function of the variational parameters of the other variables

neighbouring the factor fa. With this notation in place we are now able to

describe the NCVMP algorithm.

Algorithm 2 Non-conjugate Variational Message Passing

1: Initialise all variables to uniform θi := 0∀i
2: while not converged do
3: for all variables i do
4: for all neighbouring factors a ∈ N(i) do

5: φa→i := C(θi)
−1 ∂Sa(θi)

∂θi
6: end for
7: θi :=

∑
a∈N(i) φa→i

8: end for
9: end while

To motivate Algorithm 2 we give a rough proof that we will have a fixed point

at the correct point in parameter space: the algorithm will be at a fixed point if

the gradient of the KL divergence is zero.

Theorem 4. Algorithm 2 has a fixed point at {θi : ∀i} if and only if {θi : ∀i} is

a stationary point of the KL divergence KL(q||p).

Proof. Firstly define the function

S̃a(θ;φ) :=

∫
qi(xi; θ) logma→i(xi;φ)dxi, (6.7)

which is an approximation to the function Sa(θ). Since qi and ma→i belong to
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the same exponential family we can simplify as follows,

S̃a(θ;φ) =

∫
qi(xi; θ)(φ

Tu(xi)− κ(φ))dxi = φT 〈u(xi)〉θ − κ(φ) = φT
∂κ(θ)

∂θ
− κ(φ),

(6.8)

where 〈·〉θ implies expectation wrt qi(xi; θ) and we have used the standard prop-

erty of exponential families that 〈u(xi)〉θ = ∂κ(θ)
∂θ

. Taking derivatives wrt θ we

have ∂S̃a(θ;φ)
∂θ

= C(θ)φ. Now, the update in Algorithm 2, Line 5 for φa→i ensures

that

C(θ)φ =
∂Sa(θ)

∂θ
⇔ ∂S̃a(θ;φ)

∂θ
=
∂Sa(θ)

∂θ
. (6.9)

Thus this update ensures that the gradients wrt θi of S and S̃ match. The update

in Algorithm 2, Line 7 for θi is designed to minimise the approximate local KL

divergence for xi:

θi := arg min
θ

−H[qi(xi, θ)]−
∑
a∈N(i)

S̃a(θ;φa→i)

 (6.10)

where H[.] is the entropy, and is analogous to multiplying factor to variable

messages together in standard VMP. We can also see this explicitly since

∂

∂θi

−H[qi(xi, θi)]−
∑
a∈N(i)

S̃a(θi;φa→i)

 = −∂H[qi(xi, θi)]

∂θi
−
∑
a∈N(i)

∂S̃a(θi;φa→i)

∂θi

= C(θi)θi −
∑
a∈N(i)

C(θi)φa→i (6.11)

Setting this expression equal to zero gives the update in Algorithm 2, Line 7, i.e.

θi :=
∑

a∈N(i) φa→i. If and only if we are at a fixed point of the algorithm, we will

have

∂

∂θi

−H[qi(xi, θi)]−
∑
a∈N(i)

S̃a(θi;φa→i)

 = 0 (6.12)

for all variables i. By Equation 6.9, if and only if we are at a fixed point (so that
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θi has not changed since updating φ) we have

−∂H[qi(xi, θi)]

∂θi
−
∑
a∈N(i)

∂Sa(θi)

∂θi
=
∂KL(q||p)

∂θi
= 0 (6.13)

for all variables i.

Theorem 4 gives some intuition about what NCVMP is doing. S̃a is a conju-

gate approximation to the true Sa function, chosen to have the correct gradients

at the current value of the variational parameter, θi. The update at variable

xi for θi combines all these approximations from factors involving xi to get an

approximation to the local KL, and then moves θi to the minimum of this approx-

imation. Theorem 4 shows that if NCVMP converges to a fixed point then it is at

a stationary point of the KL divergence KL(q||p). However, unlike VMP we have

no guarantee to decrease KL(q||p) at every step, and indeed we do sometimes

encounter convergence problems which require damping to fix: see Section 6.7.

Another important property of Non-conjugate VMP is that it reduces to stan-

dard VMP for conditionally conjugate factors (see Section 5.10 for a defintion of

conditional conjugacy).

Theorem 5. If 〈log fa(x)〉¬qi(xi) as a function of xi can be written µTu(xi) −
c where c is a constant, then the NCVMP message ma→i(xi, φa→i) will be the

standard VMP message ma→i(xi, µ).

Proof. To see this note that

〈log fa(x)〉¬qi(xi) = µTu(xi)− c ⇒ Sa(θ) = µT 〈u(xi)〉θ − c, (6.14)

where µ is the expected natural statistic under the messages from the variables

connected to fa other than xi. We have

Sa(θ) = µT
∂κ(θ)

∂θ
− c ⇒ ∂Sa(θ)

∂θ
= C(θ)µ, (6.15)

so from Algorithm 2, Line 5 we have

φa→i := C(θ)−1∂Sa(θ)

∂θ
= C(θ)−1C(θ)µ = µ, (6.16)
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the standard VMP message.

The update for θi in Algorithm 2, Line 7 is the same as for VMP, and Theo-

rem 5 shows that for conjugate factors the messages sent to the variables are the

same as for VMP. Thus NCVMP is a generalisation of VMP.

Another appealing property of NCVMP is that like Newton’s method, and

unlike gradient descent, it is parameterisation invariant. Recall that NCVMP is

based on matching gradients at the current posterior θ(t)

∂S̃(θ;φ)

∂θ

∣∣∣∣∣
θ=θ(t)

=
∂S(θ)

∂θ

∣∣∣∣
θ=θ(t)

. (6.17)

Now if we reparameterise in terms of ψ with a bijective mapping θ = g(ψ) then we

would derive NCVMP in terms of Sψ(ψ) = S(g(ψ)) and S̃ψ(ψ;φ) = S̃(g(ψ);φ).

Theorem 6. NCVMP is invariant to reparameterisation of S.

Proof. The NCVMP gradient matching equation in the new parameterisation is

∂S̃ψ(ψ;φ)

∂ψ
=
∂Sψ(ψ)

∂ψ
. (6.18)

Substituting to get the original S function this implies

∂S̃(g(ψ);φ)

∂ψ
=
∂S(g(ψ))

∂ψ
. (6.19)

Applying the chain rule we have

∂S̃(θ;φ)

∂θ

∂θ

∂ψ
=
∂S(θ)

∂θ

∂θ

∂ψ
. (6.20)

The Jacobian matrix ∂θ
∂ψ

is full rank since g is bijective, so the original gradient

matching scheme is recovered.

We have shown here that the NCVMP scheme is invariant to the parameter-

isation of S. It should be noted of course that it is not invariant to reparame-

terisations of the model which change the structure of the variational posterior

itself.
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6.1.1 Gaussian variational distribution

As an illustration we describe the NCVMP updates for a Gaussian variational dis-

tribution q(x) = N(x;m, v) and approximate factor/messagemf→x = N(x;mf , vf ).

Although these can be derived from the generic formula using natural parameters

in Algorithm 2, Line 5 it is mathematically more convenient to use the mean and

variance which is valid by Theorem 6.

S̃(m, v) =

∫
x

N(x;m, v) logN(x;mf , vf )dx (6.21)

= −.5 log(2πvf )−
(m−mf )

2 + v

2vf
,

⇒dS̃(m, v)

dm
=
mf −m
vf

,
dS̃(m, v)

dv
= − 1

2vf
. (6.22)

Matching gradients wrt (m, v) and solving for the natural parameters gives

1

vf
= −2

dS(m, v)

dv
,

mf

vf
=
m

vf
+
dS(m, v)

dm
. (6.23)

Thus we see that the message mf→x = N(x;mf , vf ) has a very simple form in

terms of the derivatives of S wrt to the mean and variance.

6.1.2 Alternative derivation

NCVMP can alternatively be derived by assuming the incoming messages to xi are

fixed apart from ma→i(xi;φ) and calculating a fixed point update for this message.

We will focus on a particular factor fa and variable xi, with the aim of calculating

an exponential family message ma→i(xi;φ), parameterised by the natural param-

eter φ. Consider the local KL divergence under exponential family variational

posterior qi(xi; θi), with natural parameter θi. Let q¬ai (x) :=
∏

b∈ne(xi)¬amb→i(xi)

be the “cavity distribution” and q¬i(x¬i) =
∏

j 6=i qj(xj) the current variational
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distribution over variables other than xi.

KL(qi(xi; θi)q
¬i(x¬i)||fa(x)q¬a(x)) =

∫
qi(xi; θi) log qi(xi; θi)dxi

−
∫
qi(xi; θi)q

¬i(x¬i) log fa(x)dx

−
∫
qi(xi; θi)q

¬i(x¬i) log q¬a(x)dx + const. (6.24)

The cavity distribution itself factorises as q¬a(x) = q¬ai (xi; θ
¬a
i )q¬a,i(x¬i), where

qi(xi; θ
¬a) is the product of all the other incoming messages to xi. The local

contribution to the KL is

KL(θi) =−H[qi(xi; θi)]

−
∫
qi(xi; θi)〈log fa(x)〉∼qi(xi)dxi

−
∫
qi(xi; θi) log qi(xi; θ

¬a)dxi + const.

=θTi κ(θi)− κ(θi)− S(θi)− θ¬ai κ(θi) + κ(θ¬ai ) + const. (6.25)

where we have used the fact that the expectation of the sufficient statistics of an

exponential family are given by the derivatives of κ. The variational posterior

qi(xi; θi) will be updated to ma→i(xi;φ)qi(xi; θ
¬a
i ), so we have the relationship

θi = θ¬ai + φ. We assume that θ¬ai is fixed (which is at least true once the

algorithm has converged), so differentiating wrt to θi and φ is equivalent:

∂KL

∂φ
=
∂KL

∂θi
= C(θi)θi + κ(θi)− κ(θi)−

∂S(θi)

∂θi
− C(θi)θ

¬a

= C(θi)φ−
∂S(θi)

∂θi
(6.26)

where C(θi) is the Hessian of κ(θi). Setting this derivative to zero corresponds to

a fixed point scheme for φ, and recovers the Non-conjugate VMP update for φ.
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6.1.3 NCVMP as moment matching

The gradient matching operation of NCVMP can be seen as analogous to moment

matching in EP. The gradient of the true S is

∂S(θ)

∂θ
=

∫
∂qi(xi; θ)

∂θ
〈log fa(x)〉¬qi(xi)dxi

=

∫
∂ log qi(xi; θ)

∂θ
qi(xi; θ)〈log fa(x)〉¬qi(xi)dxi

=

∫
(u(xi)− 〈u(xi)〉qi(xi;θ))qi(xi; θ)〈log fa(x)〉¬qi(xi)dxi. (6.27)

Whereas the gradient of the approximate S̃ is

∂S̃(θ, φ)

∂θ
=

∫
∂qi(xi; θ)

∂θ
logma→i(xi;φ)dxi

=

∫
∂ log qi(xi; θ)

∂θ
qi(xi; θ)〈logma→i(xi;φ)dxi

=

∫
(u(xi)− 〈u(xi)〉qi(xi;θ))qi(xi; θ) logma→i(xi;φ)dxi. (6.28)

We see that matching gradients is equivalent to matching moments of the true and

approximate log factors, given the current variational posterior. Thus NCVMP

extends the applicability of VMP in much the same way that EP extends BP.

6.2 Gamma prior with unknown shape

Consider a variable y which we would like to give a Gamma distribution with

unknown (stochastic) shape s and rate r. The factor is

f(y, s, r) =
ys−1rs

Γ(s)
exp(−ry) =: G(y; s, r). (6.29)

The log factor is

log f(y, s, r) = (s− 1) log y + s log r − log Γ(s)− ry. (6.30)
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The messages to the output y and rate r are standard:

mf→y(y) = G(y; 〈s〉, 〈r〉)
mf→r(r) = G(r; 〈s〉+ 1, 〈y〉), (6.31)

The normal VMP message to s would be

mf→s(s) ∝
exp{s[〈log y〉+ 〈log r〉]}

Γ(s)
, (6.32)

This is in fact an exponential family distribution, but unfortunately the partition

function is not known analytically. Using non-conjugate VMP we can calculate

the appropriate message under the constraint that the shapes s has a Gamma

variational distribution. The message to s is then G(s; c, d), with c, d given by[
c− 1

d

]
= C(θ)−1∂S(θ)

∂θ
, (6.33)

where θ = [a, b]T is the natural parameter vector for the current variational

posterior on s and C(θ) is the Hessian of κ(θ) = log Γ(a)− a log b, which is

C(θ) =

[
ψ′(a) −1/b

−1/b a/b2

]
, (6.34)

where ψ′(.) is the trigamma function. Calculating ∂S(θ)
∂θ

requires quadrature: an

efficient and accurate approach is detailed in Appendix 6.A.

The simplest possible usage of this nonconjugate factor is to fix r = 1, y = 1,

and set a Gamma(1, 1) prior on s (Figure 6.1a). In this case we can analytically

calculate the KL divergence between the true posterior of s and a Gamma(a, b)

approximation. The KL divergence is plotted as a function of the variational

parameters a and b in Figure 6.1b. Gradient descent is very slow due to the

flat region for large values of a and b (Figure 6.1c). Nonconjugate VMP per-

forms much better here, reaching the minimum in only a few steps (Figure 6.1c).

The computational cost of nonconjugate VMP is the same as gradient descent,

requiring only first derivatives of the KL divergence.
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Figure 6.1: Fitting a Gamma distribution using NCVMP. In this example non-
conjugate VMP is much faster than gradient descent, at the same computational
cost.
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6.2.1 Estimating a Gamma distribution

The next simplest application of the Gamma factor is to estimate the shape and

rate of an unknown Gamma distribution. Our model is

s ∼ G(1, 1)

r ∼ G(1, 1)

xi ∼ G(s, r) i.i.d. ∀i = 1, ..., N (6.35)

The {xi : i = 1 . . . N} are the observations, and we put Gamma variational

distributions on s and r. To test NCVMP in this setting, we generate synthetic

data from a Gamma distribution and vary either the true shape (Figure 6.2a)

or the sample size (Figure 6.2b). The “true” posterior was found by running

10,000 iterations of slice sampling. The general pattern is that NCVMP is able

to find the posterior mean quite accurately, but the variational posterior variance

is often two or three times smaller than the true posterior variance. This can be

explained by the strong posterior coupling of the shape s and rate r illustrated in

Figure 6.2c. The mean field factored approximation, q(r, s) = q(r)q(s) is clearly

poor here. Possible solutions would be to reparameterise in terms of the mean

s/r and variance s/r2, since these quantities are less strongly coupled a posteriori

(see Figure 6.2d), or to use a multivariate variational posterior on s and r such

as the Wishart distribution. These possibilities are left to future research.

6.3 A deterministic factor: “Exp”

Consider a deterministic factor representing the exponential function, δ(y − ex).
The exponent x is the parent and the output y is the child (Figure 6.3a). Let the

incoming messages be:

q(x) = N(x;m, v),

q(y) = G(y; ay, by), (6.36)
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Figure 6.2: Fitting a Gamma distribution.
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where we are assuming that the variational posteriors for x and y will be Gaussian

and Gamma respectively. The local KL divergence for this factor as a function

of the variational parameters for x is shown in Figure 6.3b, where the message

into y from the rest of the model is Gamma(2, 1).

We now calculate the NCVMP messages for this factor. First we calculate the

message to the exponent x. As for standard VMP for deterministic factors, we

first transform the factor into a “soft constraint” (see Section 5.11) as follows:

f(x) =

∫
δ(y − ex)G(y; ay, by)dy

= G(ex; ay, by). (6.37)

This is the “factor” that we now calculate the message for. As it happens, no

quadrature is required, since the expectation of x and ex under a Gaussian dis-

tribution are known:

S(m, v) =

∫
N(x;m, v) log f(x)dx

= (ay − 1)m− by exp(m+ v/2)

− log Γ(ay) + ay log by. (6.38)

From Equation 6.23 the message to x will be N(x;mf , vf ) where

1

vf
= by exp(m+ v/2),

mf

vf
=
m

vf
+ ay − 1− by exp(m+ v/2). (6.39)

Since this is a deterministic factor the message to y simply has the expected

sufficient statistics of f(x) under q(x), i.e. the Gamma distribution, G(y; a, b)

where

〈y〉 = 〈f(x)〉q ⇒
a

b
= exp(m+ v/2),

〈log y〉 = 〈log f(x)〉q ⇒ ψ(a)− log b = m. (6.40)

To solve for a and b one option would be to substitute b = a/ exp(m+ v/2) into
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Equation 6.40 to give

ξ(a) := log a− ψ(a) = v/2. (6.41)

The inverse of the monotonic function ξ(a) is then required, which could be tab-

ulated. We take an alternative approach, using the generalised Newton iteration

described in Minka [2002]. We now demonstrate the application of this factor to

incorporating heteroskedasticity in linear and non-linear regression models.

mx→f (x) = N(x;m, v)

my→f (y) = G(y; a, b)

f(x, y) = δ(y − ex)

x

y
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Figure 6.3: Exponential factor.

6.3.1 Heteroskedastic regression.

A common problem for standard regression models is heteroskedasticity: noise

variance that is not constant as a function of the inputs. Consider data in pairs

{(xi ∈ RP , yi ∈ R) : i = 1 . . . N}, where we wish to model P (y|x). Using the

exponential factor introduced above, it is simple to implement the following model

yi = wTxi + εi

εi ∼ N(0, exp (βTxi)) (6.42)
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The result of fitting this model to synthetic data (generated from the model),

using NCVMP, is shown in Figure 6.4a. EP could in principle be used for this

model, but would require quadrature for both the exponential and normal factors,

significantly increasing computational cost. In fact we also find EP can have

convergence problems for this model (note that the posterior distribution of (w, β)

is not log concave).
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Figure 6.4: Fitted heteroskedastic regression models. Grey regions show two
standard deviations of the predictive distribution.

It is straightforward to extend the linear model in Equation 6.42 to a non-

linear model using Gaussian processes:

f ∼ GP (0, kf )

m ∼ N(−1, 1)

l ∼ GP (0, kl)

p(t) ∼ exp (l(t) +m)

y(t) ∼ N(f(t), p(t)−1). (6.43)

Here the functions f and l are draws from GPs with different kernels kf and kl

since we might expect the noise variance to vary more slowly than the signal. See

Rasmussen & Williams [2006] for a thorough introduction to Gaussian processes.

f gives the mean of the signal, whereas l represents the log precision of the noise
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up to a constant m. This offset is included since otherwise the noise variance is

very large under the prior. This model was proposed in Adams & Stegle [2008],

where EP was used for inference. In Figure 6.4b we show this model fitted to

the well known “motorcycle” dataset [Parker & Rice, 1985] using NCVMP in

Infer.NET. We use a squared exponential kernel for both kf and kl and optimise

the log length scale of each using gradient descent on the variational lower bound.

6.4 Logistic regression models
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Figure 6.5: KL as a function of variational parameters of x for the Bernoulli-
From-Log-Odds factor required for logistic regression.

We illustrate NCVMP on Bayesian binary and multinomial logistic classifica-

tion. The regression part of the model is standard:

gkn =
D∑
d=1

WkdXdn +mk (6.44)

where g is the auxiliary variable, W is a matrix of weights with standard normal

prior, X is the design matrix and m is a per class mean, which is also given a

standard normal prior. We use a multivariate normal variational posterior on

the rows of W , and a univariate normal variational posterior for mk. For binary

classification we just have k = 1, and the observation model is p(y = 1|g1n) =

σ(g1n) where σ(x) = 1/(1 + e−x) is the logistic function. In the multinomial case
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p(y = k|g:n) = σk(g:n) where

σk(x) =
exk∑
l e
xl
, (6.45)

is the “softmax” function. The auxiliary variables g are given univariate normal

“pseudo”-marginals as described in Section 5.11. The VMP messages for the

regression part of the model are standard so we omit the details.

6.4.1 Binary logistic classification

For logistic regression we require the following factor: f(s, x) = σ(x)s(1−σ(x))1−s

where we assume s is observed. The log factor is sx − log(1 + ex). It is useful

to note that fitting the logistic factor in isolation is a convex problem wrt to the

variational parameters.

Lemma 3. If q(x) = N(x;µ, σ2) and p(x) = f(x, s)N(x;m, v) then KL(q||p) is

jointly convex in (µ, σ2).

Proof. p is log-concave in x, so h(x) = − log p(x) is convex

KL(q||p) =

∫
N(x;µ, σ2)h(x)dx−H[q]

=

∫
N(y; 0, 1)︸ ︷︷ ︸

positive

h(yσ + µ︸ ︷︷ ︸
affine

)dy − log σ + const., (6.46)

which is convex in (µ, σ), see for example Chapter 3.2, Boyd & Vandenberghe

[2004].

There are two problems: we cannot analytically compute expectations wrt to

x, and we need to optimise the variational parameters. Jaakkola & Jordan [1996]

propose the “quadratic” bound on the integrand

σ(x) ≥ σ̃(x, t) = σ(t) exp

(
(x− t)/2− λ(t)

2
(x2 − t2)

)
, (6.47)

where λ(t) = tanh (t/2)
t

= σ(t)−1/2
t

. It is straightforward to analytically optimise t

to make the bound as tight as possible. The bound is conjugate to a Gaussian,
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but we will see that its performance can be poor. An alternative proposed in

Saul & Jordan [1999] is to bound the integral:

〈log f(s, x)〉q ≥ sm− 1

2
a2v − log(1 + em+(1−2a)v/2)), (6.48)

where m, v are the mean and variance of q(x) and a is a variational parameter

which can be optimised using the fixed point iteration

a := σ(m− (1− 2a)v/2). (6.49)

We refer to this as the “tilted” bound. This bound is not conjugate to a Gaussian,

but we can calculate the NCVMP message N(mf , vf ), which from Equation 6.23

has parameters:

1

vf
= a(1− a),

mf

vf
=
m

vf
+ s− a, (6.50)

where we have assumed a has been optimised. A final possibility is to use quadra-

ture to calculate the gradients of S(m, v) directly. The NCVMP message then

has parameters

1

vf
=
〈xσ(x)〉q −m〈σ(x)〉q

v
,

mf

vf
=
m

vf
+ s− 〈σ(x)〉q. (6.51)

The univariate expectations 〈σ(x)〉q and 〈xσ(x)〉q can be efficiently computed

using Gauss-Hermite or Clenshaw-Curtis quadrature (see Trefethen [2008] for a

good comparison of these methods).

6.5 The softmax factor

Consider the deterministic softmax factor

f(x, p) =
K∏
k=1

δ (pk − σk(x)) , (6.52)
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where xk are real valued, p is a probability vector with incoming Dirichlet message,

m→p(p) = Dir(p; d), and recall that σk(x) := exk/
∑

l e
xl . We can integrate out p

to give the log factor

log f(x) =
∑
k

(dk − 1)xk − (d. −K) log
∑
l

exl , (6.53)

where we define d. :=
∑K

k=1 dk. Let the incoming message from x be the fully

factorised variational posterior, q(x) =
∏K

k=1N(xk;mk, vk). The expected log

factor is then

S(m, v) ≤
∫
q(x) log f(x)dx =

K∑
k=1

(dk − 1)mk − (d. −K)

〈
log
∑
l

exl

〉
q

(6.54)

How should we deal with the 〈log
∑

l e
xl〉 term? To maintain a lower bound on

the marginal likelihood and S(m, v) we require an upper bound on 〈log
∑

l e
xl〉.

6.5.1 Existing approaches

Log bound. The approach used by Blei & Lafferty [2007] is a linear Taylor

expansion of the log, which is accurate for small variances v:

〈log
∑
i

exi〉 ≤ log
∑
i

〈exi〉 = log
∑
i

emi+vi/2, (6.55)

which we refer to as the “log” bound. In the statistics literature this is known as

the 0-th order delta method. We now have

S(m, v) ≤
K∑
k=1

(dk − 1)mk − (d. −K) log
∑
i

emi+vi/2. (6.56)

The messages are still not conjugate, so some numerical method must be used to

learn m and v: while Blei & Lafferty [2007] used LBFGS [Liu & Nocedal, 1989]

we will use NCVMP, which from Equation 6.23 has message
∏

kN(xk;mkf , vkf )
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with

1

vkf
= (d. −K)σk,

mkf

vkf
=
mk

vkf
+ (dk − 1)− (d. −K)σk, (6.57)

where σk := σk(m + v/2).

Quadratic bound. Another bound was proposed by Bouchard [2007]:

log
K∑
k=1

exk ≤ a+
K∑
k=1

log(1 + exk−a), (6.58)

where a is a new variational parameter. Combining with Equation 6.47 we get

the “quadratic bound” on the integrand, with K + 1 variational parameters:

log
K∑
k=1

exk ≤ a+
K∑
k=1

xk − a− tk
2

+ λ(tk)[(xk − a)2 − t2k]− log σ(−tk), (6.59)

where t are new variational parameters and λ(t) = 1
2t

[
1

1+e−t
− 1

2

]
. The overall

log factor, log f(x) is then lower bounded by

K∑
k=1

(dk − 1)xk − (d. −K)

(
a−

K∑
k=1

[
xk − a− tk

2
+ λ(tk)[(xk − a)2 − t2k]− log σ(−tk)

])
.

(6.60)

This directly gives Gaussian messages, N(xk;mkf , vkf ) where

1

vkf
= 2(d. −K)λ(tk),

mkf

vkf
= (dk − 1)− (d. −K) (1/2− 2aλ(tk)) . (6.61)

So modularity can be achieved without NCVMP, but as we will see, results are

often poor. The question remains how to find a and {tk}, which we defer to

Appendix 6.B.

Taylor series approximation. We can use a Taylor series expansion about

the mean of x. This will not give a bound, but may be more accurate and is
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cheap to compute:

log
∑
i

exi ≈ log
∑
i

emi +
∑
i

(xi −mi)σi(m) +
1

2

∑
i

(xi −mi)
2σi(m)[1− σi(m)]

(6.62)

We have not included the cross terms of the Hessian because we are using a fully

factorised variational posterior for x so these terms would not contribute to the

messages to x anyway. Taking expectations we find

〈log
∑
i

exi〉q ≈ log
∑
i

emi +
1

2

∑
i

viσi(m)[1− σi(m)]. (6.63)

This approximation is similar in spirit to Laplace’s approximation (see MacKay

[2003], Chapter 27), except that we calculate the curvature around an approxi-

mate mean (calculated using VMP) rather than the MAP. The messages to xk

will be given by:

1

vkf
= (d. −K)σk(m)(1− σk(m))

mkf

vkf
= dk − 1 +

mk

vkf
− (d. −K)σk(m) (6.64)

This message will always be proper (have positive variance) but there is no guar-

antee of global convergence since this approximation is not a bound.

Bohning’s bound has the same form as the Taylor series expansion, only with

a different approximation to the Hessian matrix H of log
∑

exp, specifically using

the bound

H ≥ 1

2
(I − 11T/K) =: HB, (6.65)

which results in the following bound on log
∑

exp:

log
∑
i

exi ≤ log
∑
i

emi +
∑
i

(xi −mi)σi(m) +
1

4

∑
ij

(xi −mi)(xj −mj)(δij −
1

K
).

(6.66)
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In the case of a fully factorised distribution on x taking expectations we have:

〈log
∑
i

exi〉q ≤ log
∑
i

emi +
1

4

∑
i

(
1− 1

K

)
vi (6.67)

Analogously to the Taylor series expansion, we have the following message to xk:

1

vkf
=

1

2
(d. −K)

(
1− 1

K

)
mkf

vkf
= dk − 1 +

mk

vkf
− (d. −K)σk(m) (6.68)

Note here that the variance is constant and depends only on d. and K, and is

always less than or equal to the variance of the message calculated using the

Taylor series expansion.

6.5.2 A new bound

Inspired by the univariate “tilted” bound in Equation 6.48 we propose the mul-

tivariate tilted bound:

〈log
∑
i

exi〉 = 〈log e
∑
j ajxje−

∑
j ajxj

∑
i

exi〉

≤
∑
j

ajmj + log
∑
i

〈exi−
∑
j ajxj〉

=
∑
j

ajmj + log
∑
i

emi−
∑
j ajmj+(1−2ai)vi/2+

∑
j a

2
jvj/2

=
1

2

∑
j

a2
jvj + log

∑
i

emi+(1−2ai)vi/2 =: T(m, v, a) (6.69)

where a ∈ RK is a new variational parameter and we have used the fact that

xi −
∑
j

ajxj ∼ N

(
mi −

∑
j

ajmj, (1− 2ai)vi +
∑
j

a2
jvj

)
. (6.70)
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Setting ak = 0 for all k we recover the log bound in Equation 6.55 (hence this is

the “tilted” version). Taking derivatives of the bound T wrt ak gives

∇akT(m, v, a) = akvk − vkσk
[
m +

1

2
(1− 2a) · v

]
(6.71)

where · denotes element-wise multiplication. Setting this expression equal to zero

results in the fixed point update

a := σ

[
m +

1

2
(1− 2a) · v

]
(6.72)

This is a O(K) operation since the denominator of the softmax function is shared.

For the softmax factor quadrature is not viable because of the high dimensionality

of the integrals. From Equation 6.23 the NCVMP messages using the tilted bound

have natural parameters

1

vkf
= (d. −K)ak(1− ak),

mkf

vkf
=
mk

vkf
+ dk − 1− (d. −K)ak, (6.73)

where we have assumed a has been optimised. As an alternative we suggest

choosing whether to send the message resulting from the quadratic bound or

tilted bound depending on which is currently the tightest, referred to as the

“adaptive” method.

6.6 Results

Here we aim to present the typical compromise between performance and mod-

ularity that NCVMP addresses. We will see that for both binary logistic and

multinomial softmax models achieving conjugate updates by being constrained

to quadratic bounds is sub-optimal, in terms of estimates of variational parame-

ters, marginal likelihood estimation, and predictive performance. NCVMP gives

the freedom to choose a wider class of bounds, or even use efficient quadrature

methods in the univariate case, while maintaining simplicity and modularity.
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6.6.1 The logistic factor

We first test the logistic factor methods of Section 6.4.1 at the task of estimat-

ing the toy model σ(x)π(x) with varying Gaussian prior π(x) := N(x;µ, σ2)

(see Figure 6.6). We calculate the true mean and variance using quadrature.

The quadratic bound has the largest errors for the posterior mean, and the pos-

terior variance is severely underestimated. In contrast, NCVMP using quadra-

ture, while being slightly more computationally costly, approximates the posterior

much more accurately: the error here is due only to the VB approximation. Using

the tilted bound with NCVMP gives more robust estimates of the variance than

the quadratic bound as the prior mean changes. However, both the quadratic

and tilted bounds underestimate the variance as the prior variance increases.
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Figure 6.6: Posterior mean and variance estimates of σ(x)π(x) with varying prior
π(x). Left: varying the prior mean with fixed prior variance v = 10. Right:
varying the prior variance with fixed prior mean m = 0.

125



(a) VMP with quadratic bound (b) NCVMP with quadrature

Figure 6.7: Synthetic logistic regression experiment. Log likelihood of the true
regression coefficients under the approximate posterior for 10 synthetic logistic
regression datasets. Note y-axis scales.

6.6.2 Binary logistic classification

We generated ten synthetic logistic regression datasets with N = 30 data points

and P = 8 covariates. We evaluated the results in terms of the log likelihood of

the true regression coefficients under the approximate posterior, a measure which

penalises poorly estimated posterior variances. Figure 6.7 compares the perfor-

mance of non-conjugate VMP using quadrature and VMP using the quadratic

bound. For four of the ten datasets the quadratic bound finds very poor solu-

tions. Non-conjugate VMP finds a better solution in seven out of the ten datasets,

and there is marginal difference in the other three. Non-conjugate VMP (with no

damping) also converges faster in general, although some oscillation is seen for

one of the datasets.

6.6.3 Softmax bounds

To have some idea how the various bounds for the softmax integral. Eq
[
log
∑K

k=1 e
xk

]
compare empirically, we calculated relative absolute error on 100 random distri-

butions q(x) =
∏

kN(xk;mk, v). We sample mk ∼ N(0, u). When not being

varied, K = 10, u = 1, v = 1. Ground truth was calculated using 105 Monte

Carlo samples. We vary the number of classes, K, the distribution variance v and

spread of the means u. Results are shown in Figure 6.8. As expected the tilted

bound (6.69) dominates the log bound (6.55), since it is a generalisation. As K
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is increased the relative error made using the quadratic bound increases, whereas

both the log and the tilted bound get tighter. In agreement with Bouchard [2007]

we find the strength of the quadratic bound (6.58) is in the high variance case,

and Bohning’s bound is very loose under all conditions. Both the log and tilted

bound are extremely accurate for variances v < 1. In fact, the log and tilted

bounds are asymptotically optimal as v → 0. “Taylor” gives accurate results but

is not a bound, so convergence is not guaranteed and the global bound on the

marginal likelihood is lost. The spread of the means u does not have much of

an effect on the tightness of these bounds. These results show that even when

quadrature is not an option, much tighter bounds can be found if the constraint

of requiring quadratic bounds imposed by VMP is relaxed. For the remainder of

the results we consider only the quadratic, log and tilted bounds.
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Figure 6.8: Log10 of the relative absolute error approximating E log
∑

exp, av-
eraged over 100 runs.

6.6.4 Multinomial softmax classification

Synthetic data. For synthetic data sampled from the generative model we

know the ground truth coefficients and can control characteristics of the data.

We first investigate the performance with sample size N , with fixed number of

features P = 6, classes K = 4, and no noise (apart from the inherent noise

of the softmax function). As expected our ability to recover the ground truth

regression coefficients improves with increasingN (see Figure 6.9a, left). However,

we see that the methods using the tilted bound perform best, closely followed by
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the log bound. Although the quadratic bound has comparable performance for

small N < 200 it performs poorly with larger N due to its weakness at small

variances. The choice of bound impacts the speed of convergence (see Figure 6.9a,

right). The log bound performed almost as well as the tilted bound at recovering

coefficients but takes many more iterations to converge. The extra flexibility of

the tilted bound allows faster convergence, analogous to parameter expansion [Qi

& Jaakkola, 2006]. For small N the tilted bound, log bound and adaptive method

converge rapidly, but as N increases the quadratic bound starts to converge much

more slowly, as do the tilted and adaptive methods to a lesser extent. “Adaptive”

converges fastest because the quadratic bound gives good initial updates at high

variance, and the tilted bound takes over once the variance decreases. We vary

the level of noise in the synthetic data, fixing N = 200, in Figure 6.9b. For all

but very large noise values the tilted and adaptive bounds perform best.

UCI datasets. We test the multinomial classification model on three standard

UCI datasets: Iris (N = 150, D = 4, K = 3), Glass (N = 214, D = 8, K = 6)

and Thyroid (N = 7200, D = 21, K = 3), see Table 6.1. Here we have also

included “Probit”, corresponding to a Bayesian multinomial probit regression

model, estimated using VMP, and similar in setup to Girolami & Rogers [2006],

except that we use EP to approximate the predictive distribution, rather than

sampling. On all three datasets the marginal likelihood calculated using the

tilted or adaptive bounds is optimal out of the logistic models (“Probit” has a

different underlying model, so differences in marginal likelihood are confounded

by the Bayes factor). In terms of predictive performance the quadratic bound

seems to be slightly worse across the datasets, with the performance of the other

methods varying between datasets. We did not compare to the log bound since

it is dominated by the tilted bound and is considerably slower to converge.

6.7 Discussion

NCVMP is not guaranteed to converge. Indeed, for some models we have found

convergence to be a problem, which can be alleviated by damping: if the NCVMP

message ismf→i(xi) then send the messagemf→i(xi)
1−αmold

f→i(xi)
α wheremold

f→i(xi)
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(a) Varying sample size
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(b) Varying noise level

Figure 6.9: Left: root mean squared error of inferred regression coefficients.
Right: iterations to convergence. Results are shown as quartiles on 16 random
synthetic datasets. All the bounds except “quadratic” were fit using NCVMP.
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Iris Quadratic Adaptive Tilted Probit

Marginal likelihood −65± 3.5 −31.2± 2 −31.2± 2 −37.3± 0.79
Predictive likelihood −0.216± 0.07 −0.201± 0.039 −0.201± 0.039 −0.215± 0.034
Predictive error 0.0892± 0.039 0.0642± 0.037 0.065± 0.038 0.0592± 0.03

Glass Quadratic Adaptive Tilted Probit

Marginal likelihood −319± 5.6 −193± 3.9 −193± 5.4 −201± 2.6
Predictive likelihood −0.58± 0.12 −0.542± 0.11 −0.531± 0.1 −0.503± 0.095
Predictive error 0.197± 0.032 0.200± 0.032 0.200± 0.032 0.195± 0.035

Thyroid Quadratic Adaptive Tilted Probit

Marginal likelihood −1814± 43 −909± 30 −916± 31 −840± 18
Predictive likelihood −0.114± 0.019 −0.0793± 0.014 −0.0753± 0.008 −0.0916± 0.010
Predictive error 0.0241± 0.0026 0.0225± 0.0024 0.0226± 0.0023 0.0276± 0.0028

Table 6.1: Average results and standard deviations on three UCI datasets, based
on 16 random 50 : 50 training-test splits. Adaptive and tilted use NCVMP,
quadratic and probit use VMP.

was the previous message sent to i and 0 ≤ α < 1 is a damping factor. Damping

does not change the fixed points of the algorithm.

We have introduced Non-conjugate Variational Message Passing, which ex-

tends variational Bayes to non-conjugate models while maintaining the convenient

message passing framework of VMP and allowing freedom to choose the most ac-

curate available method to approximate required expectations. Deterministic and

stochastic factors can be combined in a modular fashion, and conjugate parts of

the model can be handled with standard VMP. We have shown NCVMP to be

of practical use for fitting Bayesian binary and multinomial logistic models, and

shown proof of concept results on other models. We derived a new bound for

the softmax integral which is tighter than other commonly used bounds, but has

variational parameters that are still simple to optimise. Tightness of the bound is

valuable both in terms of better approximating the posterior and giving a closer

approximation to the marginal likelihood, which may be of interest for model

selection.

I have implemented NCVMP for the factors described in this chapter (namely

the logistic, softmax, gamma and exponential factors) in Infer.NET [Minka et al.,

2010], a probabilistic programming language which currently focuses on efficient

message passing algorithms such as VMP and EP. If a user defines a model

involving one of the factors described in this chapter and runs inference using
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VMP, Infer.NET will actually use the NCVMP method presented here. Infer.NET

is freely available for non-commercial use. All the experimental results in this

chapter were conducted using Infer.NET.

6.A Quadrature for the gamma factor

Calculating ∂S(θ)
∂θ

requires quadrature for the term

F (a, b) =

∫
G(s; a, b) log Γ(s)ds. (6.74)

Derivatives of F are given by:

∂F

∂a
=

∫
G(s; a, b)(log (sb)− ψ(a)) log Γ(s)ds (6.75)

∂F

∂b
= −1

b

∫
sG(s; a, b)ψ(s)ds. (6.76)

Gamma quadrature is difficult to calibrate so we apply a change of variable

x = log s so the domain is the whole real line and we can use Gauss-Hermite

quadrature. ∫ ∞
0

G(s; a, b)f(s)ds =
ba

Γ(a)

∫ ∞
−∞

exp (ax− bex)f(ex)dx (6.77)

The density p(x) = ba

Γ(a)
exp (ax− bex) is log-concave with its mode at log (a/b)

and Laplace approximation variance of 1/a. The mean of p is given by the

expectation of log s under the original Gamma distribution, which is ψ(a) −
log b. We will use this mean and the Laplace approximation variance for the

proposal distribution when performing Gauss-Hermite quadrature. The double

exponential term of p tails off very rapidly as x → ∞, but the eax term tails off

only slowly as x → −∞, especially for small a. We first aim to calculate the

E[sψ(s)] term required for Equation 6.76. Making a change of variables as in

Equation 6.77 means finding the expectation of exψ(ex) under p. For x < 0 we

find that ψ(ex) is well approximated by −e−x (this follows from the basic identity
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Γ(y + 1) = yΓ(y)), so exψ(ex) ≈ −1. We rewrite the expectation as

E[exψ(ex)] = E[exψ(ex) + 1]− 1 (6.78)

The E[exψ(ex) + 1] term is evaluated using quadrature. This is accurate because

exψ(ex) + 1 tends rapidly to zero as x → −∞, fortuitously squashing the heavy

tail of p for x < 0.

To calculate the E log Γ(s) term required for Equation 6.75 we perform a

similar trick. Since log Γ(ex) is well approximated by −x for x < 0 we write the

expectation as

E log Γ(ex) = E[log Γ(ex) + x]− E[x] (6.79)

The term E[log Γ(ex) + x] is accurately calculated using quadrature, and it is

straightforward to show that the term E[x] = ψ(a)− log b by transforming back

to the original s domain.

The final expectation we need for Equation 6.75 is

ES[log s log Γ(s)] = EX [x log Γ(ex)] (6.80)

The integrand is approximately −x2 for x < 0 so we split the integral as

E[x log Γ(ex)] = E[x log Γ(ex) + x2]− E[x2] (6.81)

The term E[x2] is calculated as follows:

EX [x2] = ES[log2 s] = ψ′(a) + (ψ(a)− log b)2 (6.82)

where the final expectation is found by differentiating
∫

exp [(a− 1) log x− bx]dx =

Γ(a)/ba twice wrt a.

To show the utility of these improvements to the quadrature routines, we

calculate the relative error made in calculating ∂F
∂a

and ∂F
∂b

. Table 6.2 shows

the relative errors made with and without the “tricks” of this section. In all

cases the relative error is decreased by several orders of magnitude, at almost no

cost in computation time. An alternative is simply to increase the number of
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With tricks Without tricks
∂F
∂a

b = 0.1 b = 1 b = 10 b = 0.1 b = 1 b = 10
a = 0.1 -3E-15 -6.3E-15 -2.5E-15 -0.67 -0.69 -0.73
a = 1 3E-13 -4.2E-13 -2.4E-13 0.0021 -0.066 -0.056
a = 10 3.3E-13 3.3E-13 -8.1E-13 1.7E-07 9.2E-07 -6.1E-05
∂F
∂b

b = 0.1 b = 1 b = 10 b = 0.1 b = 1 b = 10
a = 0.1 1.8E-13 1.8E-15 1.5E-15 0.18 0.049 0.05
a = 1 -5.3E-15 2.2E-14 2.7E-16 -5E-05 0.0064 0.0013
a = 10 -5E-13 -5.2E-13 4.3E-13 -2.3E-09 -4.6E-08 2E-06

Table 6.2: Relative errors made in calculating derivatives of C using different
quadrature methods for varying a (rows) and b (columns).

quadrature nodes used, but this is typically much less effective as well as being

more computationally expensive.

6.B Optimising the variational parameters for

the quadratic softmax bound

Here we discuss how to optimise the variational parameters a and {tk} required

for the quadratic softmax bound in Equation 6.59. Taking the expectation of

Equation 6.59 wrt to x we have

〈log
K∑
k=1

exk〉 ≤ F (a, t) :=

a+
K∑
k=1

mk − a− tk
2

+ λ(tk)[(mk − a)2 + vk − t2k]− log σ(−tk). (6.83)

To minimise Equation 6.83 wrt a and {tk} Bouchard [2007] derives coordinate

descent fixed point updates as follows:

a← 2
∑K

k=1mkλ(tk) +K/2− 1

2
∑K

k=1 λ(tk)
,

t2k ← (mk − a)2 + vk ∀k. (6.84)
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For small dimensionality and counts these fixed point iterations converge very

fast. However, for large counts and dimensionality K we found that the coupling

between t and a was very strong and co-ordinate-wise optimization was highly

inefficient. In this regime an effective solution is to substitute the expression for

tk in Equation 6.84 into the objective function to give a univariate optimization

problem in a, which can be solved efficiently using Newton’s method. At the

minimum we have

tk(a) =
√

(mk − a)2 + vk (6.85)

Substituting this expression into Equation 6.83 we get

F (a) = min
t
F (a, t) = a+

K∑
k=1

mk − a− tk(a)

2
− log σ(−tk(a)) (6.86)

The derivatives of tk wrt a are

t′k(a) = −(mk − a)/tk(a)

t′′k(a) = 1/tk(a)− (mk − a)2/tk(a)3 (6.87)

Using the chain rule we now find:

F ′(a) = 1 +
∑
k

−(1 + t′k(a))/2 + t′k(a)σ(tk(a))

F ′′(a) =
∑
k

t′′k(a)(σ(tk(a))− .5) + t′k(a)2σ(tk(a))σ(−tk(a)) (6.88)

We can then use a Newton algorithm with Levenberg-Marquardt line search to

cope with small F ′′(a).
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Chapter 7

Message Passing Algorithms for

Dirichlet Diffusion Trees and

Pitman Yor Diffusion Trees

Much of the work in this chapter was published in Knowles et al. [2011a]. In this

chapter we demonstrate efficient approximate inference for the Dirichlet Diffu-

sion Tree [Neal, 2003a] and the Pitman Yor diffusion tree introduced in Chap-

ter 4, both of which are Bayesian nonparametric priors over tree structures. We

utilise the message passing algorithms introduced in Chapter 5 to approximate

the Bayesian model evidence for a specific tree structure. This is used to drive

sequential tree building and greedy search to find optimal tree structures, cor-

responding to hierarchical clusterings of the data. We demonstrate appropriate

observation models for continuous and binary data. The empirical performance

of our method is very close to the computationally expensive MCMC alternative

on a density estimation problem, and significantly outperforms kernel density

estimators.

Our algorithms use the message passing framework reviewed in Chapter 5.

For many models message passing has been shown to significantly outperform

sampling methods in terms of speed-accuracy trade-off. However, general α-

divergence [Minka, 2005] based message passing is not guaranteed to converge,

which motivates our second, guaranteed convergent, algorithm which uses mes-
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sage passing within EM [Kim & Ghahramani, 2006]. Message passing methods

are inherently parallelisable which is increasingly important on modern computer

architectures. Running inference on the same model and same data is repro-

ducible. Convergence is simple to assess compared to MCMC (see Section 1.2 for

a more detailed discussion of the trade-offs between these methods).

Little attention seems to have been given to using message passing or de-

terministic methods for learning hierarchical structure, although a variational

inference procedure for the nested CRP [Blei et al., 2010] has recently been intro-

duced by Wang & Blei [2009]. Efficient inference using Sequential Monte Carlo

for Kingman’s coalescent was demonstrated in Teh & Gorur [2009]. We leave in-

vestigating whether our framework could be adapted to the coalescent as future

work.

The contributions of this chapter are as follows. We derive and demonstrate

full message passing (Section 7.2) and message passing within EM algorithms

(Section 7.3) to approximate the model evidence for a specific tree, including

integrating over hyperparameters (Section 7.4). We show how the resulting ap-

proximate model evidence can be used to drive greedy search over tree structures

(Section 7.5). We demonstrate that it is straightforward to connect different

observation models to this module to model different data types, using binary

vectors as an example. Finally we present experiments using the DDT and our

approximate inference scheme in Section 7.7 (results for the PYDT can be found

in Chapter 4).

7.1 Approximate Inference

Recall that both the DDT and PYDT define a distribution over the tree structure,

T, branching times, t and node locations, x. We assume that the likelihood of

the observed data {yn : n = 1, ..., N} can be written as a product of conditional

probabilities for each of the leaves, xn:
∏

n l(yn|xn). Our aim is to calculate the

posterior distribution

P (x, t,T|y) =
P (y, x, t,T)∑

T

∫
P (y, x, t,T)dxdt

. (7.1)
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Unfortunately, this integral is analytically intractable. Our solution is to use

message passing or message passing within EM to approximate the marginal

likelihood for a given tree structure: P (y|T) =
∫
P (y, x, t|T)dxdt. We use this

approximate marginal likelihood to drive tree building/search algorithm to find

a weighted set of K-best trees.

7.2 Message passing algorithm

Here we describe our message passing algorithm for a fixed tree structure, T. We

employ the α-divergence framework from Minka [2005]. For each segment, [ab] ∈
S(T) we introduce two variables which are deterministic functions of existing

variables: the branch length, ∆[ab] = tb−ta and the variance of the Gaussian factor

connecting a and b, v[ab] = σ2∆[ab]. We now write the unnormalized posterior as

a product of factors: ∏
n∈leaves

l(yn|xn)
∏

[ab]∈S(T)

N(xb;xa, v[ab])

× δ(v[ab] − σ2∆[ab])δ(∆[ab] − (tb − ta))
× I(0 < ∆[ab] < 1)P (tb|T), (7.2)

where δ(.) is the Dirac delta spike at 0, I(.) is the indicator function and P (tb|T)

is given by Equation 4.5 for the DDT and by Equation 4.28 for the PYDT.

These functions are used to break down more complex factors into simpler ones

for computational and mathematical convenience. Equation 7.2 defines a factor

graph over the variables, shown in Figure 7.1. Our variational approximation is

fully factorized with a Gaussian q for the locations xb, divergence times tb, branch

lengths ∆[ab], variances v[ab] and overall variance σ2, and a Gamma variational

distribution for the divergence function parameter c.

7.2.1 Choosing α-divergences.

We choose an α for each factor f in the factor graph and then minimize the

α-divergence, Dα[q∼f (W )f̃(W )||q∼f (W )f(W )] with respect to f̃(W ) where W =
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Figure 7.1: A subsection of the factor graph for a tree. The left node represents
an internal node and is connected to two child nodes (not depicted). The right
node is a leaf node hence its location and divergence time are observed (denoted
in gray). The choice of α for the factors is shown for the parent node. The
hyperparameters σ2 and c which are connected to the × (multiplication) factor
and time prior P respectively are not shown.

{x, t,∆, v} is the set of latent variables for all nodes. Here

Dα(p||q) =
1

α(1− α)

∫
1− p(x)αq(x)(1−α)dx, (7.3)

is the α-divergence between two (normalized) distributions p and q; and q∼f (W ) =

q(W )/f̃(W ) is the cavity distribution: the current variational posterior without

the contribution of factor f . Minka [2005] describes how this optimization can

be implemented as a message passing algorithm on the factor graph.

We choose which α-divergence to minimize for each factor considering perfor-

mance and computational tractability. The normal factor, deterministic minus

factor, divergence time prior and constraint factor use α = 1, which corresponds

to Expectation Propagation (see Section 5.5). The multiplication factor and prior

on divergence function parameter c use α = 0, which corresponds to Variational

Bayes/Variational Message Passing (see Sections 5.7—5.9). For the normal factor

we use α = 1 to attempt to approximate the evidence unbiasedly (α = 0 only

lower bounds the evidence, see Minka [2005]). For the divergence time prior we
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used α = 1 (EP), although we could have used Non-conjugate VMP (Chapter 6).

For the constraint factors the divergence is infinite for α = 0 but analytic for

α = 1. For the multiplication factor we use α = 0 due to the multimodal poste-

rior [Stern et al., 2009]. Since we only use α = 0 and 1 our algorithm can also

be viewed as a hybrid Expectation Propagation [Minka, 2001b] and Variational

Message Passing [Winn & Bishop, 2006]/mean field [Beal & Ghahramani, 2006]

algorithm. We use the Infer.NET [Minka et al., 2010] low level library of message

updates to calculate the outgoing message from each factor.

7.2.2 Further approximations

We found several approximations to the full message passing solution to be ben-

eficial to the accuracy-speed trade-off of our algorithm.

• The message from the divergence time prior is a Beta distribution. Calculat-

ing the true EP message when q(t) is Gaussian would require quadrature,

which we found to be less accurate and more computationally expensive

than the following: map the incoming Gaussian message to a Beta distribu-

tion with the same mean and variance; multiply in the Beta message; then

map the outgoing message back to a Gaussian, again by matching moments.

• For practically sized trees (i.e. with 10 or more leaves) we found the message

from the variance to the normal factor was typically quite peaked. We found

no significant loss in performance in using only the mean of this message

when updating the location marginals. In fact, since this removes the need

to do any quadrature, we often found the accuracy was improved.

• Similarly for the divergence function parameter c, we simply use the mean

of the incoming message, since this was typically quite peaked.

Approximating the model evidence is required to drive the search over tree

structures (see Section 7.5). Our evidence calculations follow Minka [2005], to

which we defer for details. We use the evidence calculated at each iteration to

assess convergence.
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7.2.3 Scheduling

Sensible scheduling of the message passing algorithm aided performance. The

factor graph consists of two trees: one for the divergence locations, one for the

divergences times, with the branch lengths and variances forming cross links

between the trees. Belief propagation on a tree is exact: in one sweep up and then

down the tree all the marginals are found. Although this is not the case when the

divergence times are unknown or KL projection is required at the leaves, it implies

that such sweeps will propagate information efficiently throughout the tree, since

EP is closely related to BP. To propagate information efficiently throughout this

factor graph, our schedule consists of one sweep up and down the tree of locations

and tree of times, followed by one sweep back and forth along the cross-links.

Usually one would start with the messages coming in from the prior: for

example for the divergence times. Unfortunately in our case these messages are

improper, and only result in proper marginals when the constraints that ta < tb

are enforced through the constraint that the branch length ∆a→b must be positive.

To alleviate this problem we initially set the message from the prior to spread

the divergence times in the correct order, between 0 and 1, then run an iteration

of message passing on the tree of divergence times, the constraints 0 < ∆a→b < 1

and 0 < t < 1 and the prior. This results in proper variance messages into the

Normal factors when we sweep over the tree of location times.

7.3 Message passing in EM algorithm

For high dimensional problems we have found that our message passing algorithm

over the divergence times can have convergence problems. This can be addressed

using damping, or by maximizing over the divergence times rather than trying

to marginalize them. In high dimensional problems the divergence times tend

to have more peaked posteriors because each dimension provides independent

information on when the divergence times should be. Because of this, and because

of the increasing evidence contribution from the increasing number of Gaussian

factors in the model at higher dimension D, modeling the uncertainty in the

divergence times becomes less important. This suggests optimizing the divergence
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times in a variational EM type algorithm.

In the E-step, we use message passing to integrate over the locations and

hyperparameters. In the M-step we maximize the variational lower bound on

the marginal likelihood with respect to the divergence times. While directly

maximizing the marginal likelihood itself is in principle possible calculating the

gradient with respect to the divergence times is intractable since all the terms

are all coupled through the tree of locations.

One simple approach is to optimize each divergence time in turn (e.g. us-

ing golden section search), performing a co-ordinate ascent. However, we found

jointly optimizing the divergence times using LBFGS [Liu & Nocedal, 1989] to be

more computationally efficient. Since the divergence times must lie within [0, 1]

we use the reparameterization si = log [ti/(1− ti)] to extend the domain to the

whole space, which we find improves empirical performance. From Equations 2.3

and 4.5 the lower bound on the log evidence with respect to an individual diver-

gence time ti is

(〈c〉Jθ,α
ni
− 1) log (1− ti)−

D

2
log (ti − tp)− 〈

1

σ2
〉 b[pi]

ti − tp

a =
D

2
, b[pi] =

1

2

D∑
d=1

E[(xdi − xdp)2] (7.4)

where xdi is the location of node i in dimension d, and p is the parent of node i.

The full lower bound is the sum of such terms over all nodes. The expectation

required for b[pi] is readily calculated from the marginals of the locations after

message passing. Differentiating to obtain the gradient with respect to ti is

straightforward so we omit the details. The chain rule is used to obtain the

gradient with respect to the reparameterisation si, i.e. ∂·
∂si

= ∂ti
∂si

∂·
∂ti

= ti(1− ti) ∂·∂ti
Although this is a constrained optimization problem (branch lengths cannot be

negative) it is not necessary to use the log barrier method because the 1/(ti− tp)
terms in the objective implicitly enforce the constraints.
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7.4 Hyperparameter learning.

The DDT has two hyperparameters: the variance of the underlying Brownian

motion σ2 and the divergence function parameter c, which controls the smooth-

ness of the data. For the full message passing framework, the overall variance σ2

is given a Gaussian prior and variational posterior and learnt using the multipli-

cation factor with α = 0, corresponding to the mean field divergence measure.

For the EM algorithm we use a Gamma prior and variational posterior for 1/σ2.

The message from each segment [ab] to 1/σ2 is then

m[ab]→1/σ2 = G

(
D

2
+ 1,

b[pi]

2(tb − ta)

)
, (7.5)

where G(α, β) is a Gamma distribution with shape α and rate β, and b[pi] is the

same as for Equation 7.4. The smoothness c is given a Gamma prior, and sent

the following VMP message from every internal node i:

〈log p(ti, c)〉 = log c+ (cJni − 1)〈log(1− ti)〉
⇒ mi→c = G (c; 2,−Jni〈log [1− ti]〉) (7.6)

The term 〈log (1− ti)〉 is deterministic for the EM algorithm and is easily ap-

proximated under the full message passing algorithm by mapping the Gaussian

q(ti) to a Beta(ti;α, β) distribution with the same mean and variance, and noting

that 〈log (1− ti)〉 = φ(β)− φ(α + β) where φ(.) is the digamma function.

The PYDT has two additional hyperparameters, the concentration parame-

ter θ and discount parameter α. We optimise the variational lower bound with

respect to these parameters using golden section search on the terms in Equa-

tions 4.23 and 4.25.

7.5 Search over tree structures

Our resulting message passing algorithm approximates the marginal likelihood

for a fixed tree structure, p(y|T)p(T) (we include the factor for the probability

of the tree structure itself). Ideally we would now sum the marginal likelihood
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over all possible tree structures T over N leaf nodes. Unfortunately, there are

exponentially many such tree structures so that enumeration of all tree structures

for even a modest number of leaves is not feasible. Instead we maintain a list of

K-best trees (typically K = 10) which we find gives good empirical performance

on a density estimation problem.

We search the space of tree structures by detaching and re-attaching subtrees,

which may in fact be single leaf nodes. Central to the efficiency of our method is

keeping the messages (and divergence times) for both the main tree and detached

subtree so that small changes to the structure only require a few iterations of

inference to reconverge.

We experimented with several heuristics for choosing which subtree to detach

but none significantly outperformed choosing a subtree at random. However, we

greatly improve upon attaching at random. We calculate the local contribution

to the evidence that would be made by attaching the root of the subtree to the

midpoint of each possible branch (and to every possible branch point for the

PYDT). We then run inference on the L-best attachments (L = 3 worked well,

see Figure 7.4). What we do next depends on whether we are in the initialisation

tree building phase or the tree search phase, as described in the following.

7.5.1 Sequential tree building

To build an initial tree structure we sequentially process the N leaves. We start

with a single internal node with the first two leaves as children. We run inference

to convergence on this tree. Given a current tree incorporating the first n − 1

leaves, we use the local evidence calculation described above to propose L possible

branches (or branch points for the PYDT) at which we could attach leaf n. We

run inference to convergence on the L resulting trees and choose the one with the

best evidence for the next iteration.

7.5.2 Tree search

Starting from a random tree or a tree built using the sequential tree building

algorithm, we can use tree search to improve the list of K-best trees. We detach

a subtree at random from the current best tree, and use the local evidence calcu-
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lation to propose L positions at which to re-attach the detached subtree. We run

message passing/EM to convergence in the resulting trees, add these to the list

of trees and keep only the K best trees in terms of model evidence for the next

iteration.

7.6 Predictive distribution

To calculate the predictive distribution for a specific tree we compute the distri-

bution for a new data point conditioned on the posterior location and divergence

time marginals. Firstly, we calculate the probability of diverging from each branch

(and branch point in the PYDT case) according to the data generating process.

Secondly we draw several (typically three) samples of when divergence from each

branch occurs. Finally we calculate the Gaussian at the leaves resulting from

Brownian motion starting at the sampled divergence time and location up to

t = 1. This results in a predictive distribution represented as a weighted mixture

of Gaussians. Finally we average the density from the K-best trees found by the

algorithm.

7.6.1 Likelihood models

Connecting our DDT module to different likelihood models is straightforward.

We demonstrate a Gaussian observation model for multivariate continuous data

and a probit model for binary vectors. Both factors use α = 1, corresponding to

EP [Minka, 2001b].

7.6.2 Computational cost

One iteration of message passing costs O(ND). Message passing therefore has

complexity O(mND) where m is the number of iterations. m is kept small by

maintaining messages when changing the structure. The E-step of EM costs

O(nND), where n is the number of iterations. With fixed σ and Gaussian obser-

vations the E-step is simply belief propagation so n = 1. Usually n < m due to

not updating divergence times. The order k LBFGS in the M-step costs O(ksN),
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where s, the number of iterations, is typically small due to good initialisation. So

an iteration costs O(mND + skN).

In contrast to our message passing solution, MCMC requires sampling the

divergence times using slice sampling: there are N − 1 divergence times to sam-

ple, each of which requires an O(ND) belief propagation sweep, giving total cost

O(SN2D) where S is the number of slice sampling iterations used before sam-

pling the structure itself. The different scaling with N , combined with our more

directed, greedy search confers our improvement in performance.

7.7 Experiments

We tested our algorithms on both synthetic and real world data to assess com-

putational and statistical performance both of variants of our algorithms and

competing methods. Where computation times are given these were on a system

running Windows 7 Professional with a Intel Core i7 2.67GHz quadcore processor

and 4GB RAM. Note that the results presented in this chapter are for the DDT,

results for the PYDT are shown in Chapter 4.

7.7.1 Toy 2D fractal dataset.

Our first experiment is on a simple two dimensional toy example with clear hier-

archical (fractal) structure shown in Figure 7.2, with N = 63 datapoints. Using

the message passing in EM algorithm with sequential tree building followed by

100 iterations of tree search we obtain the tree shown in Figure 7.2 in 7 seconds.

The algorithm has recovered the underlying hierarchical structure of data apart

from the occasional mistake close to the leaves where it is not clear what the

optimal solution should be anyway.

7.7.2 Data from the prior (D = 5, N = 200)

We use a dataset sampled from the prior with σ2 = 1, c = 1, shown in Figure 7.3,

to assess the different approaches to tree building and search discussed in Sec-

tion 7.5. The results are shown in Figure 7.4. Eight repeats of each method

were performed using different random seeds. The slowest method starts with a
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Figure 7.2: Toy 2D fractal
dataset (N=63) showing learnt
tree structure.
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Figure 7.3: First two dimensions
of the synthetic dataset from the
prior with D = 5, N = 200, σ2 =
1, c = 1. Lighter background de-
notes higher probability density.

random tree and tries randomly re-attaching subtrees (“search random”). Pref-

erentially proposing re-attaching subtrees at the best three positions significantly

improves performance (“search greedy”). Sequential tree building is very fast (5-7

seconds), and can be followed by search where we only move leaves (“build+search

leaves”) or better, subtrees (“build+search subtrees”). The spread in initial log

evidences for the sequential tree build methods is due to different permutations of

the data used for the sequential processing. This variation suggests tree building

using several random permutations of the data (potentially in parallel) and then

choosing the best resulting tree.

7.7.3 Macaque skull measurements (N = 200, D = 10)

We use the macaque skull measurement data of Adams et al. [2008] to assess our

algorithm’s performance as a density model. Following Adams et al. [2008] we

split the 10 dimensional data into 200 training points and 28 test points. The

data consists of three technical repeats which we simply model as three separate

datasets. We compare to the infinite mixture of Gaussians (iMOG MCMC) and

DDT MCMC methods implemented in Radford Neal’s Flexible Bayesian Mod-
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Figure 7.4: Performance of different tree building/search methods on the syn-
thetic dataset.

eling software1. As a baseline we use a kernel density estimate with bandwidth

selected using the npudens R package. The results are shown in Figure 7.5. The

EM version of our algorithm is able to find a good solution in just a few tens

of seconds, but is eventually beaten on predictive performance by the MCMC

solution. The full message passing solution lies between the MCMC and EM

solutions in terms of speed, and only outperforms the EM solution on the first of

the three repeats. The DDT based algorithms typically outperform the infinite

mixture of Gaussians, with the exception of the second dataset.

7.7.4 Gene expression dataset (N = 2000, D = 171)

We apply the EM algorithm with sequential tree building and 200 iterations of

tree search to hierarchical clustering of the 2000 most variable genes from Yu &

et al. Landsittel [2004]. We calculate predictive log likelihoods on four splits into

1800 training and 200 test genes. The results are shown in Table 7.1. The EM

algorithm for the DDT has comparable statistical performance to the MCMC

solution whilst being an order of magnitude faster. Both implementations signif-

1http://www.cs.toronto.edu/~radford/
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Figure 7.5: Per instance test set performance on the macaque skull measurement
data Adams et al. [2008]. The three plots arise from using the three technical
replicates as separate datasets.

iMOG DDT EM DDT MCMC
Score −1.00± 0.04 −0.91± 0.02 −0.88± 0.03
Time 37min 48min 18hours

Table 7.1: Results on a gene expression dataset [Yu & et al. Landsittel, 2004].
Score is the per test point, per dimension log predictive likelihood. Time is the
average computation time on the system described in Section 7.7.

icantly outperform iMOG in terms of predictive performance. DDT MCMC was

run for 100 iterations, where one iteration involves sampling the position of every

subtree, and the score computed averaging over the last 50 samples. Running

DDT MCMC for 5 iterations takes 54min (comparable to the time for EM) and

gives a score of −0.98± 0.04, worse than DDT EM.

7.7.5 Animal species

To demonstrate the use of an alternative observation model we use a probit

observation model in each dimension to model 102-dimensional binary feature

vectors relating to attributes (e.g. being warm-blooded, having two legs) of 33

animal species [Tenenbaum & Kemp, 2008]. The tree structure we find, shown

in Figure 7.6, is intuitive, with subtrees corresponding to land mammals, aquatic

mammals, reptiles, birds, and insects (shown by colour coding). The tree obtained

is broadly consistent with that found by Bayesian hierarchical clustering [Heller

& Ghahramani, 2005]. BHC is faster than our method, taking around 3s vs 30s
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for DDT EM (the difference would be less for continuous data where we do not

require EP). However, BHC is not a generative model and so cannot be coherently

incorporated into larger models.

7.8 Conclusion

Our approximate inference scheme, combining message passing and greedy tree

search, is a computationally attractive alternative to MCMC for DDT and PYDT

models. We have demonstrated the strength of our method for modeling observed

continuous and binary data at the leaves, and hope that by demonstrating that

efficient inference is possible we will encourage the community to use this elegant

prior over hierarchies.
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Figure 7.6: DDT structure learnt over animals using 102 binary features with the
probit observation model. The hierarchy is intuitively reasonable, which subtrees
for the different animal kingdoms. Contrast this to Figure 4.11 which shows the
solution under the PYDT.
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Chapter 8

Conclusion and Future Work

This thesis aims to contribute towards allowing more expressive probabilistic

models to be defined and handled computationally. To this end two new Bayesian

non-parametric models were introduced: non-parametric sparse factor analysis

(Chapter 3) and the Pitman Yor diffusion tree (Chapter 4). Both these mod-

els uncover latent structure in observed data and provide state of the art pre-

dictive performance. Chapter 5 reviewed efficient approximate message passing

algorithms for Bayesian inference, and a novel extension of variational message

passing in particular was presented in Chapter 6. Finally in Chapter 7 message

passing algorithms were used to enable faster inference in the Dirichlet diffusion

tree and Pitman Yor diffusion tree.

8.1 Future work

Here we discuss some potential future research directions.

8.1.1 Non-parametric sparse factor analysis

Prior knowledge. In a domain like biology there is wealth of semantic prior

knowledge: known transcription factors, protein interactions, signalling pathways

and so on. Incorporating all this information is a daunting challenge both from

a statistical and computational perspective. The non-parametric sparse factor

analysis could represent a component of a system designed to integrate and ex-
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trapolate from these diverse sources of data. One can imagine incorporating

prior knowledge in a soft fashion: allowing observed data to suggest corrections

to “known” signalling pathways, or hypothesise previously unknown molecular

interactions which could then be tested experimentally.

Efficient inference. While considerable effort has been invested in both more

efficient MCMC [Doshi-Velez & Ghahramani, 2009a; Doshi-Velez et al., 2009a]

and variational methods [Ding et al., 2010; Doshi-Velez et al., 2009b] for the

most simple IBP based models, little attempt has been made to extend these

methods to more complex models such as NSFA, although this should be relatively

straightforward.

8.1.2 Pitman Yor diffusion trees

Different diffusion processes. We focused on the specific case of Brownian

diffusion on the tree structure, which is particularly attractive since belief propa-

gation can be used to very efficiently evaluate the marginal likelihood. Combined

with different link functions at the leaves this need not be particularly restric-

tive: Chapter 7 demonstrated using a probit observation model to allow binary

data to be modelled, and appropriate link functions could be used analogously

to generalised linear models [McCullagh & Nelder, 1989]. Alternatively the dif-

fusion process itself can be changed, for example random mutation processes are

commonly used in modeling genetic variation [Huelsenbeck et al., 2001], or a hi-

erarchical Dirichlet process [Teh et al., 2006] as proposed in Adams et al. [2010].

Care must be taken to understand the properties of these different diffusion pro-

cesses [Steinhardt & Ghahramani, 2012]. Another option would be the auxiliary

variable method of [Pitt & Walker, 2005]. For the subset of these models with

low rank continuous spaces, exact inference is tractable [Smith et al., 2012].

Latent variable models. It would be particularly interesting to investigate

the use of the PYDT to learn hierarchical structure over latent variables such

as Hidden Markov Models, specifically in part of speech tagging [Kupiec, 1992]

where a hierarchy over the latent states aids interpretability, and Latent Dirichlet
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Allocation, where it is intuitive that topics might be hierarchically clustered [Blei

et al., 2004].

Analogously to the Hierarchical DP construction of the infinite HMM, it

should be possible to construct a hierarchical diffusion process, to allow for ex-

ample hierarchical states in an HMM.

Dependent tree structures. In Teh et al. [2011] a time dependent partition

valued stochastic process is constructed using coagulation and fragmentation pro-

cess and used to model genetic variation. While providing excellent empirical

performance, this construction assumes a flat partitioning of the data where we

know the true generating process to be hierarchical. An open question is how to

construct covariate dependent distributions over tree structures.

Improved MCMC methods. Much of the computational benefit of the greedy

message passing algorithm for the DDT and PYDT presented in Chapter 7 comes

from being able to propose sensible reattachment positions for the detached sub-

trees. In principle such moves should be possible as part of a Metropolis Hastings

scheme, but care must of course be taken to maintain detailed balance.

Variational methods for the tree structure. While we used message pass-

ing methods to approximate the marginal likelihood for a given tree structure, it

would be interesting to investigate learning the tree structure itself using varia-

tional methods. Mean field and structured variational inference over the latent

variables and tree structure for the model of Williams [2000] was described in

[Adams et al., 2000] and [Storkey, 2000] respectively. However, these methods

retain the disadvantage of requiring the number of levels and number of nodes per

level to be pre-specified. An adaptive variational method able to add nodes/levels

as required could be beneficial, but escaping local modes might be challenging.

8.1.3 Message passing

While we focused on deterministic methods such as quadrature and bounds to find

the expectations required for Non-conjugate VMP, there has been recent working

using Monte Carlo instead [Graves, 2011]. Since the approximate posterior q
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typically has a simple exponential family form it is easy to sample from. An

interesting question for future research is what convergence guarantees can be

given for such an algorithm and how many samples are needed: i.e. how accurate

do the gradient approximations need to be?

While NCVMP and EP both allow message passing algorithms to be applied

to a wide range of models, neither has clear convergence guarantees, and indeed

in general little is known about the convergence properties of such algorithms. As

mentioned in Section 5.12 some limited results are available for mixture models

[Titterington, 2011; Wang & Titterington, 2006]. Better understanding of when

these algorithms converge is clearly important if they are to see widespread use,

especially in a package such as Infer.NET which aims to provide “automatic”

inference where a user is able to input any generative model and get back a

custom message passing algorithm.
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