
Diffusion trees as priors

David A. Knowles
University of Cambridge

April 20, 2012



Motivation

I True hierarchies

I Parameter tying

I Visualisation and
interpretability
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Setup: Pitman-Yor diffusion tree

I Generalisation of the Dirichlet Diffusion Tree (Neal, 2001)

I A top-down generative model for trees over N datapoints
x1, x2, · · · , xN ∈ RD

I Points start at “time” t = 0 and follow Brownian diffusion in
a D-dimensional Euclidean space until t = 1, where they are
observed

I Model based approach allows uncertainty over trees to be
quantified, and integration into larger models
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Branching probability

At a branch point,

P(following branch k) =
nk − α
m + θ

,

P(diverging) =
θ + αK

m + θ
,

where

I nk : number of samples which previously took branch k

I K : current number of branches from this branch point

I m =
∑K

k=1 nk : number of samples which previously took the
current path

I θ, α are hyperparameters



Probability of diverging
To maintain exchangeability, probability of diverging becomes

P

(
diverging

in [t, t + dt]

)
=

a(t)Γ(m − α)dt

Γ(m + 1 + θ)

where we use a(t) = c/(1− t). Note that
∫

[0,1] a(t)dt =∞ gives
divergence before t = 1 a.s., and therefore a continuous
distribution on x .
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Example draws in R2
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(a) c = 1, θ = 0, α = 0 (DDT)
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(b) c = 1, θ = 0.5, α = 0

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

(c) c = 1, θ = 1, α = 0
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(d) c = 3, θ = 1.5, α = 0



Lemma
The probability of generating a specific tree structure, divergence
times, divergence locations and corresponding data set is invariant
to the ordering of data points.

P( ) = P( )



Proof.
Probability of tree structure:

∏
[ab]∈internal edges

∏Kb
k=3[θ + (k − 1)α]

∏Kb
l=1 Γ(nb

l − α)

Γ(m(b) + θ)Γ(1− α)Kb−1
(1)

Probability of divergence times:∏
[ab]∈internal edges

a(tb) exp
[
(A(ta)− A(tb))Hθ,α

m(b)−1

]

where we define Hθ,α
n =

∑n
i=1

Γ(i−α)
Γ(i+1+θ) .

Probability of node locations:∏
[ab]∈edges

N(xb; xa, σ
2(tb − ta)I )

None of these depend on the order of data points!



Proposition

The Pitman-Yor Diffusion Tree defines an infinitely exchangeable
distribution over data points.

Proof.
Summing over all possible tree structures, and integrating over all
branch point times and locations, by Lemma 1 we have infinite
exchangeability.



Corollary

There exists a prior ν on probability measures on RD such that the
samples x1, x2, . . . generated by a PYDT are conditionally
independent and identically distributed (iid) according to F ∼ ν,
that is, we can represent the PYDT as

PYDT (x1, x2, . . . ) =

∫ (∏
i

F(xi )

)
dν(F)

.

Proof.
Since the PYDT defines an infinitely exchangeable process on data
points, the result follows directly by de Finetti’s Theorem.



Comparing to the DPM

It is difficult for the DPM to model fine structure: it has to choose
between using many small clusters whose parameters will be
difficult to fit, or large clusters that would oversmooth the data.
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Parameter ranges

There are several valid ranges of the parameters (θ, α):

I 0 ≤ α < 1 and θ > −2α. General multifurcating case with
arbitrary branching degree.

I α < 0 and θ = −κα where κ ∈ Z ≥ 3 is the maximum
outdegree of a node.

I α < 1 and θ = −2α. Binary branching, and specifically the
DDT for α = θ = 0. A parameterised family of priors
proposed by MacKay and Broderick (2007).

I α = 1 gives instantaneous divergence so data points are
independent.



Effect of varying θ

Fix α = 0. Large θ: flat clusterings. Small θ: hierarchical
clusterings.

theta



Tree balance

Binary branching parameter range: α < 1 and θ = −2α.
Probability of going left is

nl − α
nl + nr − 2α

(2)

This reinforcement is equivalent to hypothesising a per node
“probability of going left”, with prior

p ∼ Beta(−α,−α) (3)

Conditioning on the previous data points

p|nr , bl ∼ Beta(nl − α, nr − α) (4)

Thus marginalising out p gives (2). For α close to 1, p will be
close to 0 or 1, so the tree will be very unbalanced. For α→ −∞,
p will be close to 1

2 giving balanced trees.



Tree balance
A measure of tree imbalance is Colless’s I (Colless, 1982)

I =
2

(n − 1)(n − 2)

∑
a∈T
|l(a)− r(a)| (5)

The normalised no. of unbalanced nodes in a tree, J (Rogers,
1996), i.e.

J =
1

(n − 2)

∑
a∈T

(1− I[l(a) = r(a)]) (6)
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Generalises the Dirichlet diffusion tree

θ = α = 0 recovers the DDT of Neal (2001).
Probability of diverging off a branch

a(t)Γ(m − 0)dt

Γ(m + 1 + 0)
=

a(t)(m − 1)!dt

m!
=

a(t)dt

m
, (7)

Probability of following a branch at an existing branch point is
proportional to the number of previous datapoints having followed
that branch ∏Kb=2

l=1 Γ(nb
l − 0)

Γ(m(b) + 0)
=

(nb
1 − 1)!(nb

2 − 1)!

(m(b)− 1)!
, (8)



Nested CRP

I Distribution over hierarchical partitions

I Denote the K blocks in the first level as {B1
k : k = 1, ...,K}

I Partition these blocks with independent CRPs

I Denote the partitioning of B1
k as {B2

kl : l = 1, ...,Kk}
I Recurse for S iterations, forming a S deep hierarchy

1 2 3 4 5 6 7

B1
1 B1
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B2
11 B2
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21



Nested CRP

A draw from a S = 10-level nested Chinese restaurant process with
15 leaves.



Continuum limit of a nested CRP

Associate each level s in an S-level nCRP with “time”
ts = s−1

S ∈ [0, 1), and let the concentration parameter at level s be
a(ts)/S , where a : [0, 1] 7→ R+. Taking the limit S →∞ recovers
the Dirichlet Diffusion Tree with divergence function a(t).

S = 5 S = 10 S = 15



Other properties of the PYDT

I Generalisation of DP mixture of Gaussians (with specific
variance structure)

I Prior over tree structures is a multifurcating Gibbs
fragmentation tree (McCullagh et al., 2008), the most general
Gibbs type, Markovian, exchangeable, consistent distribution
over trees



Inference: MCMC

I Not straightforward to extend Neal’s slice sampling moves
because of atoms in the prior at existing branches

I Propose new subtree locations from the prior: slow!

I Working on Gibbs sampling algorithm using uniformisation
ideas from (Rao and Teh, 2011) (with Vinayak Rao)



Inference: EM with greedy search

I Power EP or EM to calculate marginal likelihood for a tree

I Use this to drive sequential tree building and search over tree
structures

I Warm start inference

I Use local evidence contribution to propose L = 3 “good”
re-attachment locations

A straightforward extension of the algorithm we presented at ICML
2011 for the DDT (K., 2011)
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Results: toy data
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Figure: Optimal trees learnt by the greedy EM algorithm for the DDT
and PYDT on a synthetic dataset with D = 2,N = 100.



Results: Macaques skull measurements
Ntrain = 200,Ntest = 28,D = 10 Adams et al. (2008)
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Figure: Density modeling of the D = 10,N = 200 macaque skull
measurement dataset of Adams et al. (2008). Top: Improvement in test
predictive likelihood compared to a kernel density estimate. Bottom:
Marginal likelihood of current tree. The shared x-axis is computation
time in seconds.



Results: Animal species

I 33 animal species from Kemp and Tenenbaum (2008)

I 102-dimensional binary feature vectors relating to attributes
(e.g. being warm-blooded, having two legs)

I Probit regression



Results: Animal species
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Figure: Tree structure learnt for the animals dataset of Kemp and
Tenenbaum (2008).



Other priors over tree structures used in ML

I Kingman’s coalscent (KC) (Kingman, 1982; Teh et al., 2008).
Points coalesce together rather than fragmenting as in the
DDT/PYDT. KC is in a sense the dual process to the DDT, a
fact used in Teh et al. (2011).

I Fixed number of generations and individuals per generation
where each child chooses its parent (Williams, 2000), a
discretisation of KC.

I Nested CRP itself (Blei et al., 2010; Steinhardt and
Ghahramani, 2012). How to choose when to stop?

I Tree structured stick breaking (Adams et al., 2010). Extends
the stick breaking construction of the CRP to the nested CRP,
and adds a per node stopping probability.



Infinite Latent Attributes model for network data
(with Konstantina Palla)

I Existing network models explain a “flat” clustering structure
I ILA has features that are partitioned into disjoint groups

(subclusters)
I Generalises the IRM (Kemp and Tenenbaum, 2006),

LFIRM (Miller et al., 2009), and MAG (Kim and Leskovec,
2011)

I Excellent empirical performance in link prediction

Generative model:

Z|α ∼ IBP(α)

c(m)|γ ∼ CRP(γ)

w
(m)
kk ′ |σw ∼ N(0, σ2

w )

Pr(rij = 1|Z,C,W) = σ

(∑
m

zimzjmw
(m)
cmi cmj

+ s

)
.



Gaussian Process Regression Networks
(with Andrew Wilson)

I Multivariate heteroskadistic regression with covariate
dependent signal and noise correlations

I Tractibility of Gaussian processes and multitask advantages of
neural networks

W (x)ij ∼ GP(0, kw )

fi (x) ∼ GP(0, kf + σ2
f δ)

y(x) ∼ N(W (x)f(x), σ2
y I )
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Future/ongoing work

I Improved MCMC: uniformisation, slice sampling subtree
locations

I Hierarchical structured states in an infinite HMM (e.g. for
unsupervised part of speech tagging, modelling genetic
variation)

I Topic modelling: hierarchy over topic specific distributions
over words

I How to summarise posterior samples?

I Time varying tree structures?
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