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Chapter 1

Introduction

When an individual becomes infected by a fast evolving virus, such as Human Immunod-
eficiency Virus (HIV-1) or Hepatitis B (HBV), minor variants rapidly evolve. Although
these variants may exist at very low levels, they are hugely important in determining drug
resistance. If a minor variant is resistant to the drug that inhibits the primary strain, it
will rapidly proliferate under this new selective pressure, and the benefit of the treatment
is likely to be mostly lost [1]. As a result, methods to identify minor variants present in an
individual are of great interest for directing treatment. A relatively new method is ultra deep
pyrosequencing (UDPS) which allows short reads of viral DNA to be sequenced at enormous
coverage (currently around 5000x) at reasonable cost [2]. With limiting dilution Sanger se-
quencing variants present at 20% or above are detectable: with ultradeep pyrosequencing
that limit is pushed down to around 1%.

The aim of this project was to statistically characterise the errors involved in 454 ultra
deep pyrosequencing (UDPS) of HBV using available plasmid controls, and to use this un-
derstanding to design appropriate methods to reliably detect genuine variants in a dataset
from 38 individuals with HBV. The processes involved in analysing the data are summarised
in Figure 1.1, with the parts I contributed highlighted.

1.1 454 pyrosequencing process

HBV DNA was extracted from the blood plasma of 38 infected individuals and sequenced
using 454 pyrosequencing, along with three HBV-1 genomes of known sequence in plasmid
vectors. The processes involved are: extraction, limiting dilution Polymerase Chain Reaction
(PCR), amplification PCR, dilution, and pyrosequencing.

Extraction. The RNA/DNA is extracted from patient plasma, which might contain around
100,000 copies per ml. After extraction we hope to have an initial copy number of at least
100.
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Figure 1.1: Data analysis flow chart.

Limiting dilution PCR. This is used to give a rough estimate of the initial copy number.
A 4x serial limiting dilution is done, which just gives an order of magnitude result. The
sample is quantitatively diluted until PCR no longer yields product in some batches. Since
the number of molecules extracted is Poisson distributed, the proportion with no molecules
is F0 = e−λ where λ is the average number of molecules per batch. Thus by estimating F0

we can estimate λ. Samples with an initial copy number less than 100 were discarded.

Amplification PCR. This is the most troublesome step. PCR enzymes have a very wide
fidelity (accuracy of reproduction), of around 2 logs. The main choices currently are:

1. Taq polymerase. The original PCR enzyme from the thermophilic bacterium, Thermus

aquaticus, with an error rate of ∼ 10−4 [3].

2. Pfu DNA polymerase. This enzyme from the thermophilic archaeon Pyrococcus furiosus

is more stable than Taq at high temperatures and has 3’ to 5’ exonuclease proofreading
activity, which results in a much lower error rate of ∼ 10−6 [4]. Pfu was used in the
group’s previous study [5]. However, they found that the yields are typically very poor
and the process is slow.

3. Taq plus error correcting enzyme. Known as Expand High FidelityPLUS DNA poly-
merase (Roche Applied Sciences), this combination improves the error rate to around
∼ 10−5 with acceptable yields and was used for the present study.

For this dataset four slightly overlapping regions (“amplicons”) were amplified using eight
custom designed primers. An alternative is shotgun sequencing, but this makes alignment
more difficult.
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Dilution. Following amplification it is necessary to dilute the DNA down so there is just
one molecule per bead. Amplification followed by dilution seems wasteful, so in the future
it is hoped a more direct method could be developed.

Pyrosequencing. Around 25 to 30 samples are run on one plate. Errors here are less likely
to be a problem than in the initial PCR because the PCR in the pyrosequencing process
will only result in an observed error if a mismatch occurs in the first round: otherwise the
erroneous signal will be hidden by the stronger true signal.

1.2 Analysis issues

Aligning the 454 reads is simplified because the HBV genome is known. The group found
that straightforward Smith-Waterman (SW) alignment had problems with the common phe-
nomenon of an insertion closely followed by a deletion (up to around 6bp away), because the
score across the small gap is not very significant. The group developped Asymmetric SW [5],
which takes into account the quality scores from the pyrosequencer, and helped to alleviate
this issue. A further development was the Python based alignment program “Pyromap”
which also weights the Sanger sequence. Pyromap is used upstream of my analysis.

The greatest concern is the accuracy of the initial PCR, especially if there are early stage
errors: these are the most likely to look like true variants. In the group’s previous UDPS
study on HIV-1 [5], a Poisson distribution on errors was used in the homopolymeric and
non-homopolymeric regions, which was fitted by Expectation Maximisation (EM). However,
the increased error rate for the Taq blend seems to result in early errors getting replicated
and this results in the error distribution no longer being Poisson.

5



Chapter 2

Statistical Analysis of Plasmid

Controls

In order to detect which signals in the data represent genuine variants it is necessary to char-
acterise the errors resulting from amplification and pyrosequencing. To facilitate this, three
well characterised HBV plasmid vectors were pyro-sequenced using the same experimental
method as the patient samples (although the initial copy number was significantly higher,
around 100,000). Deviations from the consensus sequence represent either errors occurring
during the PCR or the pyrosequencing itself. This data allows us to fit a distribution under
the hypothesis that no minor variants are present, which can then be tested. Determining
what parametric form this null distribution should take depends on the characteristics of
the PCR and sequencing errors, which are analysed in this section. The typical process for
this analysis was to develop Python code to manipulate and analyse the aligned read data
and output the results in a format easily readable by the statistical programming language
R, which was then used for further analysis and plotting.

The level of coverage over the three plasmid controls varies significantly from around 160
to 10,000, with mean just over 3000. Possibly due to primer binding issues, one of the four
amplicons is amplified poorly, resulting in low coverage over a significant region.

2.1 Error distribution

In previous studies [5], the criterion used for assigning an observed deviation from the consen-
sus sequence as a genuine mutation was a naive percentage cutoff. If a particular deviation
is observed at a given position in more than 1% (for example) of the reads, it is considered a
genuine mutation. Thus it is of interest to look at the distribution of these error proportions
in the control data, because this gives an empirical estimate of the expected false discovery
rate (FDR) for different percentage cutoffs. Figure 2.1(a) shows the empirical FDR across
all three controls for varying percentage cutoff. At seven positions across all three controls
mismatches occur in more than 1% of reads, so we estimate the FDR per sample is 7

3
= 2.3.

Only one position has a mismatch error seen in more than 2% of reads (2.45% actually), so
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at this threshold the FDR is reduced to around 1
3
. A simple improvement I made to this

basic analysis was to consider mismatches going to different nucleotides separately, which
makes a significant difference for the worst errors: for example, what appears to be an error
frequency of 4.2% is actually a mismatch to A at 1.7% and to C at 2.4%.

(a) Empirical estimate of FDR versus percentage
cutoff.

(b) Error rate against number of ambiguous base
calls.

Figure 2.1: Statistical analysis of plasmid control data.

2.2 Homopolymeric regions

454 pyrosequencing is known to be particularly error prone in homopolymeric regions due
to carry forward and incomplete extension (CAFIE) errors [2]. Incomplete extension is
when the homopolymer is not completed due to insufficient dNTPs. Carry forward errors
occur when a nucleotide from the end of a homopolymer is read a few bases later on due to
incomplete dNTP flushing. For example, if the true sequence is AAAATCG, it may be read
as AAATCGA. We define a homopolymeric region as three or more identical nucleotides and
the immediately flanking non-identical nucleotides.

Table 2.1 summarises the error rate for mismatch vs. indels and context. I found a critical
bug in the existing code for calculating these error rates that counted a single mismatch error
four times. I found that the mismatch error rate is not significantly affected by whether the
region is homopolymeric. The increase in the overall error rate in homopolymeric regions is
due only to the increase in indel rate (the number of ambiguous base calls, N, is small).

2.3 Quality scores

The quality scores from the pyrosequencing software relate to the probability of CAFIE
errors, which is somewhat different to Sanger sequencing phred scores. There is a significant
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Error rate/10−3 Mismatch Indel N Overall
Homopolymeric 1.125 2.98 1.87 1.811
Non-homopolymeric 1.126 1.76 1.11 1.298
Overall 1.126 2.29 1.32 1.487

Table 2.1: Context specific and non-specific mismatch, indel and overall error rates averaged
across the three controls.

correlation (p < 0.05) between the mismatch error rate and average quality score, but the
effect size is very small: the gradient is −1.2 × 10−5. I also investigated whether at a given
position with mismatch errors the quality score was lower for the specific incorrect base calls,
but found no significant effect (results not shown).

2.4 Error distribution over reads

A previous study [6] into the error rates of massively parallel pyrosequencing found that
a small number of poor quality reads contained a disproportionate percentage of the total
errors. Although this phenomenon seems less severe for our data set, I found the worst 2%
of reads still account for 20% of errors. In [6] they also found that reads with lengths outside
the main peaks had increased error rate, which I confirmed in our data set. Figure 2.1(b)
shows the strong correlation between the error rate and the number of ambiguous base calls
in a read. Note that only 2% of reads contain any ambiguous base calls, so discarding these is
recommended. I found the correlation is statistically significant (p < 0.001) between the error
rate and average quality score across a read but the effect size is very small (β = −1.2×10−3).

2.5 Mismatch rates

We are primarily interested in mismatch errors because indels cause a frameshift which is
presumed to make the virus non-functional and therefore not biologically significant. This
also suggests that many indels are likely to be PCR or sequencing errors. The mean mismatch
error rate is 1.38×10−3, and the maximum mismatch frequency for one position is 4.2×10−2.
Table 2.2 shows the mismatch error rates averaged across all three controls, normalised for
the relative frequency of each base. This is the conditional probability P (X|Y ) where X

is the called base (given by the column label) and Y is the true consensus base (given by
the row label). As we expect from biochemical constrains, a base is more likely to remain a
purine (A or G) or pyrimidine (C or T). For example, A → G mismatch errors occur around
twenty times more frequently than A → T for example.
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A G T C
A 9.99e-01 1.39e-03 7.12e-05 3.39e-05
G 4.53e-04 9.99e-01 3.22e-04 1.87e-05
T 1.69e-04 3.73e-05 9.98e-01 1.54e-03
C 4.14e-04 4.74e-05 4.10e-04 9.99e-01

Table 2.2: Normalised mismatch error rates across controls.

2.6 Error rate along read

Errors occur in 454 pyrosequencing because some proportion of the PCR reactions on a bead
get out of sync [2]. We would therefore expect a cumulative effect along the length of a read.
To investigate this I plotted error rate against distance from the 5’ end of the read, as shown
in Figure A.3. There is significant noise, with systematic peaks appearing across all three
controls, probably due to homopolymeric regions. However, further investigation showed
that this effect is driven almost entirely by the increased indel rather than mismatch rate
(results not shown). For our purposes mismatches are more significant so this effect can be
ignored.

Figure 2.2: Error rate (mismatch and indel) versus distance from 3’ end for each control.
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2.7 Analytic distributions

A “rootogram” is analogous to a histogram but uses the square root of the frequency to
emphasise weight in the tail. A “hanging rootogram” can be used to compare data to a
parametric form. The expected frequency under the analytic distribution is plotted, with
the rootogram bars “hanging” from it. If the distribution is a good fit the bottom of the bars
should line up approximately with the x-axis [7]. Figure 2.2(a) shows a hanging rootogram
for a Poisson distribution fitted to the error proportion data, plotted using the goodfit

function in the R package vcd. . The systematic deviation of the bottom of the rootogram
bars from the x-axis suggests this model is inappropriate for the data. Figure 2.2(b) shows a
hanging rootogram for the negative binomial distribution, a popular choice for overdispersed
data [8]. Clearly the fit is much better, although the worst errors are still not accounted for.

(a) Poisson. (b) Negative binomial.

Figure 2.3: Hanging rootograms for Poisson and negative binomial distributions fitted to
mismatch error frequency.

Another way of visualising the fit of a discrete distribution are the “Poissonness” plots
implemented in the distplot function of the vcd package [9]. The Poisson distribution is
given by:

Pλ(k) =
e−λkλ

k!
for k ∈ 0, 1, 2 . . . (2.1)

The expected counts are therefore

mk = N
e−λkλ

k!
(2.2)

⇒ log mk + log k! = log N − λ + k log λ (2.3)

Therefore, or a dataset where the counts xk equal the expected counts mk plotting log xk +
log k! (known as the “distribution metameter”) against k would give a straight line. Analo-
gous metameters are available for the Binomial and Negative binomial distributions.
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Figure 2.3(a) shows a Poissonness plot for the total mismatch error rate. The systematic
deviation from the straight line shows the Poisson distribution to be inappropriate for the
data. Figure 2.3(b) shows the analogous “Negative binomialness” plot. Although the graph
is reasonably straight up to around x = 25, the model does not cope well with the small
number of large proportion errors. It is interesting that different conclusions are drawn
from the hanging rootogram vs. distance plots, with the negative binomial looking more
appropriate based on the former, and less appropriate with the later. I suspect this is due
to how significant the outlying, large proportion errors appear in the two plots.

(a) Poissonness plot. (b) Negative binomialness plot.

Figure 2.4: Distance plots for Poisson and negative binomial distributions fitted to mismatch
error frequency.

2.8 Multinomial regression

The analytic models of the previous section ignored the covariates which are available: the
consensus sequence, whether the region is homopolymeric (both categorical variables) and
the quality score (a continuous variable). I initially used binomial regression to model the
binary outcome: whether or not there is an error (results not shown). The multinomial
regression allows which specific error occurs to be modelled. I used the function multinom

from the package nnet, which fits the regression using a neural network and allows counts
rather than raw data unlike other packages. The usage in R is shown below:

Call:

multinom(formula = cbind(correct, A, G, T, C, N, d, i) ~ consensus +

as.factor(homo) + qual, data = a)
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(Intercept) consensusC consensusG consensusT homo1 homo2 homo3 qual

A -19.3 11.877 11.994 10.56 -0.314 -0.232 0.346 -0.590

G -6.1 -3.430 -22.979 -3.63 -0.190 -0.044 0.246 -0.591

T -10.1 1.738 1.496 -31.83 -0.035 0.404 0.120 0.603

C -10.3 -26.013 -0.575 3.82 -0.119 0.164 0.017 -0.038

N -3.5 -0.466 0.049 0.15 -4.445 -3.013 1.005 -7.456

d -7.7 0.054 -0.724 -0.31 1.353 2.472 1.486 -1.116

i -4.4 -0.386 -0.153 -0.11 -0.641 -0.205 0.673 -3.561

Residual Deviance: 419028.5

AIC: 419140.5

Including the consensus, homopolymeric, and quality covariates all reduce the Akaike
Information Criterion (AIC), which implies they are all significant. The table of coefficients
has rows corresponding to error types: {A,G,T,C} are mismatches, N is an ambiguous base
call, d is a deletion and i is an insertion. Coefficients are positive for a factor that increases the
probability of the corresponding error, and negative for those that decrease it. For example,
deletion errors are much more likely in homopolymeric regions, hence the coefficient +1.85.
Figure 2.4(b) shows a qq plot of data simulated from the multinomial regression model
versus the true data, for mismatch errors only (a perfect fit would give a straight line). For
comparison, Figure 2.4(a) shows a qq plot of data simulated from a naive binomial model,
ignoring all covariates and taking all mismatch errors as equivalent. Clearly the multinomial
regression provides a significantly better fit, although the outlying large errors are still not
accounted for.

To test the significance of the parameters in the model a bootstrap method can be
employed [10]. The probability model is approximated by its empirical distribution: delta
functions of mass 1

N
at each of the observations. The sampling distribution of each parameter

is estimated by Monte Carlo by sampling with replacement from the original observations.
The corresponding 95%-confidence intervals are shown in Table A.1 in Appendix A.5

Coefficients with confidence intervals which do not include zero are significant at a 95%
confidence level. For the mismatch errors the consensus base is significant, as expected from
the analysis of mismatch error frequencies in Section 2.5, which showed that the error rates
vary depending on the consensus. In Section 2.2 we saw that the mismatch error rate is
not increased in homopolymeric regions, and as a result the homopolymeric factor is not
significant in determining the mismatch error rate. Interestingly the quality score is also
not a significant covariate for the mismatch error rates. Deletion and insertion errors rates
are the reverse: the consensus base is not significant, but homopolymeric regions are, as are
quality scores for insertion errors.
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(a) Binomial.

(b) Multinomial regression.

Figure 2.5: QQ plots of mismatch errors against simulated data.
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Chapter 3

PCR Simulation

A concern is whether early cycle amplification PCR errors could be amplified to a significant
proportion of the population and then resemble a genuine minor variant. This will depend
on the initial copy number. Since the plasmid controls had initial copy numbers on the
order of 100,000, compared to just 100-1000 for the samples, they cannot be used to answer
this question. In order to model the probability of this occuring and the resulting error
distribution, I ran computer simulations of the PCR amplification process with a simple
binary mutation model. I wrote the simulation algorithm in C for performance reasons.

3.1 Computer simulation

I modelled the PCR amplification process as a simple autocatalytic reaction, using a stochas-
tic simulation algorithm where each step corresponds to a PCR cycle. The reaction is initially
exponential as the number of DNA molecules increases, and then becomes limited by the
availability of dNTPs. New DNA molecules inherit mutations from their parent molecule,
and gain new mutations at random at a specified rate. The simulated molecules are repre-
sented as a N×M binary matrix, where N is the length of the sequence and M is the number
of individual molecules. Each column represents a molecule. Although the final population
size varies slightly depending on the initial population, it was typically 6000-8000.

The aim of the PCR simulations is to assess the effect of low initial copy number. Fig-
ure 3.1(a) shows boxplots of the variance to mean ratio (a measure of overdispersion) for
100 repeats of the simulation, for varying initial copy number. The median is over 100 for
initial copy numbers of 1 or 10. The upper range and maximum is considerably higher for an
initial copy number of 1 than for 10. The ratio drops significantly as the initial copy number
increases, down to around 10 for an initial copy number of 10,000.

Figure 3.1(b) shows histograms of the numbers of errors per position for different initial
copy numbers, with the frequency plotted on a log (x + 1) scale. All the distributions have
similar frequency of 0, 1 and 2 errors, but the smaller the initial copy number the more
density is found in the tail, and the longer the tail is.
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(a) Variance to mean ratio. (b) Histograms.

Figure 3.1: Error distribution from PCR with different initial copy numbers.

3.2 Sparse matrix representation

In my initial implementation the limiting factor in the size of the simulations was the memory
requirements. Because stochastic effects are size dependent, it is important for the scale
simulation to be as close as possible to the scale of the real reaction. To allow a much
larger simulation to be run, a sparse representation of the binary N × M mutation matrix
is required. To do this two arrays, B and C, are defined:

1. Element i of array C gives the row index, i.e. position in the sequence, of the ith
mutation. C has length equal to the number of mutations.

2. Element j of array B gives the index in C of the first mutation in column j. B has
length M + 1.

So C[B[i], · · · , B[i + 1] − 1] are the positions of the mutations in individual i, which has
B[i + 1] − B[i] mutations.

Using this sparse matrix representation it is possible to run considerably larger, more
realistic simulations, up to final populations of around 109. To mirror the dilution of the
PCR product onto beads for pyrosequencing, 5000 “molecules” are sampled at random from
this large initial population. This is repeated 100 times to make best use of the information
about the final population. Note that the number of repeats was varied depending on the
initial copy number n0. If the error rate is ǫ and there are M positions at which mutations
can occur, the expected number of mutations in the first round of replication is ǫn0M ,
assuming that all the molecules get duplicated. To see the effect of these first round errors,
enough repeats need to be run to them. The number of repeats is therefore set to be 10

ǫn0M

(rounded up), so that the expected number of first cycle errors observed is 10 (a minimum
of 10 repeats is also specified for the larger initial copy numbers).
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Figure 3.2 shows the False Discovery Rate per sample against the chosen percentage cut
off, assuming only PCR errors, for two different PCR error rates: 10−6 on the left and 10−5

on the right. To put this in context, recall that previous studies have used a 1% threshold.
For an initial copy number of 10, a threshold of 6% is required to make the FDR negligible,
whereas for an initial copy number of 100 or more, as required in the experimental samples, a
threshold of 1% is sufficient. For an initial copy number of 500 or more even lower thresholds
might be possible, but of course the sequencing error must be taken into account as well.
The multimodal nature of the low copy number distributions is apparent here manifested
as the inflexions in the curve. The cause of the multiple modes is explained in Section 3.3
below: the early discrete cycles result in delta functions at exponentially increasing intervals.
These are smoothed by stochastic effects in the simulation.

Figure 3.2: False Discovery Rate analysis based on PCR simulations with varying initial
copy number. Left. Error rate of 10−6. Right. Error rate of 10−5.

3.3 Analytic approximations

Although the complexity of the PCR process means an analytic distribution will not exist,
it is an interesting thought experiment to consider what happens if the PCR continues
exponentially doubling for its entire duration. In this case there will be n02

i−1 molecules
in the ith generation, where n0 is the initial copy number. If there are N generations
there will be n02

N−1 total molecules. A molecule in the ith generation will have 2N−i

daughter molecules. Let the probability of a mutation in the production of any individual is
ǫ. Then Binomial(ǫ, n02

i−1) mutations will occur in the ith generation, each of which will be
transmitted to 2N−i molecules in the final population. Thus the distribution on the number
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of times, x, a mutation is duplicated is given by:

f(x|N, n0, ǫ) =
1

Z(M, N0, ǫ

N
∑

r=2

ǫn02
r−1δ(x − 2N−r) (3.1)

Since n0 and ǫ are just factors we can absorb them into the normalisation constant, which
is easily calculated as the sum of a finite geometric series: Z(N) = 2N − 2. The mean is
straightforward to calculate:

Ex = (N − 1)
2N−1

2N − 2
(3.2)

To calculate the variance we also need E[x2] = 2N−2. The variance is then given by the
standard formula var(x) = E[x2] − (Ex)2. The mean, variance and variance to mean ratio
for a range of values of N are shown in Figure A.4.

Figure 3.3: Mean, variance and variance over mean ratio for varying number of generations
for exponential PCR model.
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Chapter 4

Classifying genuine mutations

The simplest method to classify a mismatch as a genuine mutation is to use a percentage
cutoff: if the mismatch occurs in more than 1% of reads, for example, classify it as genuine.
In this section we develop two more sophisticated methodologies which leverage results from
Chapter 2. The first is an essentially frequentist hypothesis testing approach, and the second
is a more Bayesian mixture model approach. Since for mismatch error rates we have found
that the quality score and homopolymeric state are not significant, we now focus on robust
estimation of the 4 by 4 nucleotide transition matrix, Θ, which will be required for both
methods.

4.1 Estimating the nucleotide transition matrix

Element (i, j) of Θ gives the probability of observing nucleotide j, given that the true
nucleotide was i. A sufficient statistic for Θ is the count matrix of nucleotide mismatch
errors observed in the controls, n. Element (i, j) of n is the number of times we observe
nucleotide j, when the consensus nucleotide was i. Each row of the n is a sample from a
multinomial distribution with parameters given by the corresponding row of Θ. Thus the
likelihood function for a row i is:

P (ni.|Θi.) =
∏

j

Θ
nij

ij (4.1)

So the total likelihood function is

P (n|Θ) =
∏

i,j

Θ
nij

ij (4.2)

The maximum likelihood estimate of Θ is simply the normalised count matrix:

ΘML
ij =

nij
∑

k nkj

(4.3)

To prevent overfitting it would be better to calculate the posterior distribution of Θ, given the
data. To achieve this we must specify a prior on Θ. The conjugate prior to the multinomial
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distribution is the Dirichlet distibution. Therefore we specify each row i of Θ to be drawn
from a Dirichlet distribution with parameter vector αi. Thus:

P (Θi.|αi) =
Γ(
∑

j αij)
∏

j Γ(αij)

∏

j

Θ
αij−1
ij (4.4)

The four vectors form a matrix α, whose form is restricted as follows:

αij =

{

a if i = j

b if i 6= j
(4.5)

Intuitively we are saying that a prior we do not expect any particular mismatch to be more
likely than another, and but the the probability of no mismatch is of course different. An
alternative not investigated here would be to have different prior parameters for transition
vs. transversion mismatches. We can now express the prior on Θ in terms of a and b:

P (Θ|a, b) =
∏

i

P (Θi.|a, b) (4.6)

=
Γ(a + 3b)4

Γ(b)12Γ(a)4

∏

i

Θa−1
ii

∏

j,j 6=i

Θb−1
ij (4.7)

The joint distribution over the data D and Θ can now be expressed:

P (D,Θ|a, b) = P (D|Θ, a, b)P (Θ|a, b) (4.8)

=
Γ(a + 3b)4

Γ(b)12Γ(a)4

∏

i

Θnii+a−1
ii

∏

j,j 6=i

Θ
nij+b−1
ij (4.9)

Note that from the form of the posterior it is clear that the maximum a posterior (MAP)
estimate of Θ is

ΘMAP
ij =

nij + αij
∑

k(nkj + αkj)
(4.10)

because nij +αij is the effective number of counts of nucleotide i going to j. We can estimate
a and b using the evidence framework where we maximise P (D|a, b), a Type II maximum
likelihood method [11].

P (D|a, b) =

∫

P (D,Θ|a, b)dΘ

=
Γ(a + 3b)4

Γ(b)12Γ(a)4

∏

i

∫ 1

0

Θnii+a−1
ii

∏

j,j 6=i

Θ
nij+b−1
ij dΘi

=
Γ(a + 3b)4

Γ(b)12Γ(a)4

∏

i

Γ(nii + a)
∏

j 6=i Γ(nij + b)

Γ(nii + a +
∑

j 6=i(nij + b))
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It will be easier to maximise the log evidence:

log P (D|a, b) = 4 log Γ(a + 3b) − 12 log Γ(b) − 4 log Γ(a) +

∑

i

(

log Γ(nii + a) +
∑

j 6=i

log Γ(nij + b) − log Γ(nii + a +
∑

j 6=i

(nij + b))

)

To find the minimum of this function with respect to a and b a Newton-Raphson scheme
is used, for which the gradient, g, and Hessian matrix, H, are required. To calculate the
gradient the digamma function, defined by Ψ(x) = d

dx
log Γ(x) is useful. The Hessian will be

in terms of the trigamma function Ψ′(x) = dΨ(x)
dx

. The details are somewhat laborious, but
can be found in the Appendix. The Newton Raphson iteration is:

xn+1 = xn − λH−1g (4.11)

where x = (a, b)T and λ < 1 is used to help ensure stability.

4.2 Method 1: Hypothesis testing

Once an estimate of the nucleotide transition matrix Θ is available the probability of a
specific error under the model can be calculated. If we have a position where the consensus
nucleotide is i but nucleotide j is observed ne times out of a coverage of n, then the probability
of this occurring is given by the Binomial distribution, since this is the marginal distribution
of a multinomial.

P (nij = ne|Θ) =

(

n

ne

)

Θne

ij (1 − Θij)
n−ne (4.12)

The maximum likelihood or MAP estimate could be used, but it is preferred to integrate
over Θ using the posterior distribution. Let βij = nij +αij be the parameters of the posterior
Dirichlet distribution over Θ. The marginal distribution of Θij is then a Beta distribution
with parameters (βij, βi0 − βij), where βi0 =

∑

j βij , i.e.

P (Θij|β) =
1

B(βij, βi0 − βij)
Θ

βij−1
ij (1 − Θij)

βi0−βij−1 (4.13)

where the normalising constant, B(., .) is the Beta function. To integrate over Θ:

P (nij = ne|β) =

∫

P (nij = ne|Θ)P (Θij|β)dΘij (4.14)

=
1

B(βij , βi0 − βij)

(

n

ne

)
∫

Θ
ne+βij−1
ij (1 − Θij)

n−ne+βi0−βij−1dΘij(4.15)

=

(

n

ne

)

B(ne + βij, n − ne + βi0 − βij)

B(βij , βi0 − βij)
(4.16)

Since it is possible to perform this integration analytically there is little additional compu-
tational cost compared to using the simple MAP estimate. This expression calculates the
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probability of observing ne mismatches. We classify genuine mutations as mismatches where
this probability is lower than some threshold (call this the “likelihood” method), but it is
more rigorous to calculate a p-value for each mismatch: the probability of this event, or any

more extreme event, under the null hypothesis; in this case P (nij ≥ ne|β). Since we usually
have ne ≪ n it will be cheaper to calculate the p-value as follows:

P (nij ≥ ne|β) = 1 − P (nij < ne|β) (4.17)

= 1 −

ne−1
∑

m=0

P (nij = m|β) (4.18)

where each term in the sum is evaluated according to Equation 4.16. If the p-value is less
than the required significance level then the mismatch is classified as a genuine mutation.
Calculating this sum can be quite computationally intensive for large n and moderate ne, so
I used the Python package ctypes to interface to compiled, optimised C code to calculate
the Binomial coefficients (see Appendix A.7).

4.3 Method 2: A mixture model

The observed mismatches are generated by two processes: PCR/sequencing errors and gen-
uine mutations. A mixture model can be used to represent this, where the mixture propor-
tions correspond to the probability a particular mismatch is a genuine mutation rather than
an error. Mixture models can be fitting using the Expectation Maximisation method, which
iterates between fitting the mixing proportions and model parameters. Using the controls
the error model can be fitted as described in Section 4.1. To model the genuine mutations
we will use a codon mismatch matrix, since allows the incorporation three desirable features:

1. Synonymous mutations which do not affect the resulting amino acid are more likely
than non-synonymous mutations. Mutations in the third base of a codon are the most
likely to be synonymous, leading to the idea of third base “wobble”.

2. Non-synonymous mutations which result in amino acids with different physiochemical
properties, such as polarity, are less likely because they are more probable to interfere
with protein function.

3. Mutations which result in a stop codon are very unlikely to be genuine because the
shortened protein will be non-functional.

The reading frame is known for the consensus sequence, so it does not need to be inferred.
The number of parameters in the codon model, 642 = 4096, is very large so the risk of
overfitting is severe. To avoid this we should use the MAP estimation of the transition
matrix, or better still estimate the posterior. The equations are exactly the same as for the
nucleotide mismatch matrix, only now the indices are over all codons rather than nucleotides.

21



Expectation step. This involves calculating the latent variables, which in this case are
the mixture proportions. Let mi be a binary latent variable equal to 1 if codon mismatch
i is a genuine mutation, and equal to 0 if it is an error. To calculate the probability that
mismatch i is a genuine mutation, πi, we use Bayes’ rule assuming equal priors (i.e. mutation
and error are equally likely a prior):

πi = P (mi = 1|Di, Θerror, Θmutation) =
P (Di|mi = 1, Θmutation)

P (Di|mi = 1, Θmutation) + P (Di|mi = 0, Θerror)
(4.19)

where Di is the data associated with mismatch i (i.e. reference and query codon, how
many repeats and coverage), and Θmutation and Θerror are the current estimates of the codon
transition matrix for the mutation and error models respectively.

Maximisation step. This step involves updating the Θmutation using the mixing propor-
tions calculated in the previous step. The count used now are a weighted sum, with the
weights given by the mixing proportions.

nij =

{
∑

k nk1(rk = i, qk = j) if i = j
∑

k nkπk1(rk = i, qk = j) if i 6= j
(4.20)

where rk and qk are the reference and query codons respectively for mutation k, 1(·) is 1 if
the statement is true and nk is the number of times this codon mismatch is observed. Note
that for counting the number of times mismatches do not not occur for a codon, the mixing
proportion is effectively 1 since neither a mutation nor an error has occurred.

4.4 Classification performance

Assessing classification performance is difficult because no ground truth results are available:
which mismatches really are genuine mutations? Limiting dilution Sanger sequencing results
are available for one of the samples however. This method is not able to detect minor
variants at very low levels, so some genuine mutants will not have been detected. Never-the-
less, this is the closest to ground truth available for comparing the classification methods.
The data consists of 95 sequences, which I aligned to the 454 consensus sequence using the
clustalw2 multiple sequence alignment tool [12]. By varying the appropriate thresholds a
Receiver Operator Characteristic (ROC) curve (true positive rate against false positive rate,
see Appendix A.8 for definitions) can be produced for each method, as shown in Figure 4.1.
Better performance is indicated by being closer to the top left corner. Since some genuine
mutations will be missing from the “ground truth” set, the number of false positives will be
over-estimated and the number of true positives under-estimated, giving a pessimistic view
of the performance of these methods. However, the results can still be used to assess the
relative performance of the methods.

The more sophisticated methods outperform the percentage cutoff along most of the
curve. Somewhat surprisingly, the mixture model performs worse than the p-value and
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likelihood methods at most levels. I suspect this may be due to overfitting of the large
number of parameters in the mutation model codon mismatch matrix, which for which I
used a MAP estimate rather than using the posterior. Given the large number of parameters
in the model integrating over the posterior would be prudent. Although the p-value method
performs as well as or better than the likelihood method for the important low FPR region
to the left of the graph, the likelihood method performs noticeably better when higher FPR
is allowed.

Figure 4.1: ROC curve comparing classification method performance.
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Chapter 5

Conclusion

I have statistically characterised the errors inherent in 454 pyrosequencing, and used the re-
sults to design methods for detecting genuine variants which outperform the naive threshold
method commonly used. The code necessary to run these classification methods is contained
in a Python module, pyro, which I will make publicly available. I have used computer sim-
ulations of the PCR to help understand how initial copy number determines the probability
of false positives resulting from early cycle errors. Appendices A.2 and A.3 show some other
analyses not directly related to my main project.

There are various avenues of further work I would like to explore. As mentioned in
Section 4.4, the somewhat disappointing performance of the mixture model maybe due to
overfitting of the large parameter mutation model. To overcome this integration over the
posterior of the codon transition matrix should be performed, rather than using a MAP
estimate. This would require the beta function in Python, which is available as part of the
transcendental module. A more ambitious aim would be to incorporate more multivariate
information into the classification methods. For example, if two mismatches always co-
occur, it is highly unlikely they are errors but feasible that they both occur in the same
minor variant. A simple way to assess this would be to calculate a co-occurence table of
the most frequent errors. A more computationally intensive method would be to attempt to
infer the hidden phylogeny of the minor variants. Both these methods are complicated by
the fact that the sequences only cover some of the region of interest. Each amplicon would
have to be considered separately, but the phylogenies would need to be consistent within
each.
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Appendix A

Appendices

A.1 Maximising the evidence

The evidence is given by

log P (D|a, b) = 4 log Γ(a + 3b) − 12 log Γ(b) − 4 log Γ(a) +

∑

i

(

log Γ(nii + a) +
∑

j 6=i

log Γ(nij + b) − log Γ(nii + a +
∑

j 6=i

(nij + b))

)

To find the minimum of this function with respect to a and b a Newton-Raphson scheme can
be used, for which the gradient and Hessian matrix are required. To calculate the gradient
the digamma function, defined by Ψ(x) = d

dx
log Γ(x) is useful. The Hessian will be in terms

of the trigamma function Ψ′(x) = dΨ(x)
dx

.

∂ log P (D|a, b)

∂a
= −4(Ψ(a) − Ψ(a + 3b)) +

∑

i

(Ψ(nii + a) − Ψ(nii + a +
∑

j 6=i

(nij + b)))

∂ log P (D|a, b)

∂b
= −4(3Ψ(b) − 3Ψ(a + 3b)) +

∑

i

(
∑

j 6=i

Ψ(nij + b) − 3Ψ(nii + a +
∑

j 6=i

(nij + b)))

∂2 log P (D|a, b)

∂a2 = −4(Ψ′(a) − Ψ′(a + 3b)) +
∑

i

(Ψ′(nii + a) − Ψ′(nii + a +
∑

j 6=i

(nij + b))))

∂2 log P (D|a, b)

∂b2
= −4(3Ψ′(b) − 9Ψ′(a + 3b)) +

∑

i

(
∑

j 6=i

Ψ′(nij + b) − 9Ψ′(nii + a +
∑

j 6=i

(nij + b)))

∂2 log P (D|a, b)

∂a∂b
= −4(3Ψ′(b) − 3Ψ′(a + 3b)) +

∑

i

(−3Ψ′(nii + a +
∑

j 6=i

(nij + b)))
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A.2 How much control sequence?

An important question for experimental design is how much control sequence is needed
to quantify the error rate accurately. Figure A.1 shows 95% confidence intervals on the
nucleotide transition matrix parameters versus the number of bases observed. The graph
was generated by simulating mismatch error counts with the same proportions as the existing
plasmid controls but with different magnitudes, and calculating corresponding CIs. Note that
across all three plasmid controls we have on the order of 107 observed bases, which seems
suitable based on Figure A.1.

Figure A.1: 95% confidence intervals on transition matrix parameters versus number of bases
observed.

A.3 Viral load

As an offshoot of the main project I was asked to look at the relationship between the
viral load and the number of non-synonymous (i.e. biologically significant) mixtures in 1186
infected individuals.

A.4 Multinomial regression

Table A.1 shows 95% confidence intervals for the coefficients of the multinomial regression
calculated using a non-parametric bootstrap.
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Figure A.2: Viral load versus the number of non-synonymous mixtures.

(Intercept) consensusC consensusG consensusT homo1 homo2 homo3 qual
A -263, -17 10, 257 10, 257 8, 256 -1, 0.003 -2, 0.2 -0.2, 1 -5, 0.2
G -7, -6 -30, -3 -907, -21 -105, -3 -0.5, 0.1 -0.3, 0.2 -0.1, 0.7 -1, 0.07
T -136, -9 1, 128 1, 127 -1258, -29 -1, 0.3 -1, 0.8 -0.4, 0.6 -2, 2
C -423, -10 -1042, -24 -274, 0.3 3, 422 -0.4, 0.1 -0.3, 0.3 -0.2, 0.3 -2, 0.6
N -9, 9 -2, 0.6 -1, 1 -0.8, 2 -318, -3 -14, 0.5 -0.3, 2 -26, -0.4
d -10, -5 -1, 1 -1, 0.1 -1, 0.7 -0.2, 2 1, 3 0.05, 2 -4, 0.6
i -6, -2 -1, 0.3 -0.8, 0.6 -0.8, 0.6 -2, -0.06 -1, 0.6 0.04, 1 -6, -2

Table A.1: Confidence intervals for multinomial regression.
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A.5 Calculating a Binomial p-value, fast

To solve a computational bottleneck in calculating p-values under a Binomial distribution
with large n, I developed the following function, which calculates terms in the sum succes-
sively and handles multiplications as additions in log space to greatly improve performance.

double binomialPvalue(int n,int r,double p){

if (p==0.0)

return 0.0;

double logPoverOneMinusP=log(p/(1.0-p));

double y=n*log(1.0-p),sum=exp(y);

int i;

for (i=1;i<r;i++){

y+=log((double)(n-i+1))-log((double)(i))+logPoverOneMinusP;

sum+=exp(y);

}

return 1.0-sum;

}

A.6 ROC curves

For a particular classification method and threshold a confusion matrix can be calculated and
used to find the true positive rate (TPR = TP

TP+FN
) and false positive rate (FPR = FP

FP+TN
),

where

- TP is the true positive count: the number of mismatches classified as genuine mutations
and found in the limiting dilution sequences

TN is the true negative count: the number of mismatches classified as errors and not
found in the limiting dilution sequences

-- FN is the false negative count: the number of mismatches classified as errors but found
in the limiting dilution sequences

- FP is the false positive count: the number of mismatches classified as genuine mutations
but not found in the limiting dilution sequences
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